--- library_name: transformers tags: - llama-3 - code-generation - qlora - peft - colab license: llama3 datasets: - codeparrot/conala-mined-curated language: - en base_model: - meta-llama/Meta-Llama-3-8B pipeline_tag: text-generation --- # Model Card for llama3-codeweaver-lora ## Model Details - **Model name:** llama3-codeweaver-lora - **Developed by:** [mahmoudalrefaey](https://huggingface.co/mahmoudalrefaey) - **Funded by:** None (personal project) - **Finetuned from:** [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) - **License:** LLaMA 3 license This is a **LLaMA-3 8B model fine-tuned with QLoRA** on the [CoNaLa mined-curated dataset](https://huggingface.co/datasets/codeparrot/conala-mined-curated) for **code generation tasks**. The adapter was trained on **Google Colab T4 (16GB)** using **fp16 mixed precision** with QLoRA for efficiency. --- ## Uses ### Direct Use - Intended for **code generation assistant tasks** such as transforming natural language instructions into Python snippets. - Educational use for learning about LLM fine-tuning with LoRA adapters. ### Downstream Use - Can be further fine-tuned on specialized coding datasets (e.g. SQL, JS). - Integration into coding assistants and research projects. ### Out-of-Scope Use - Not intended for production-critical code security auditing. - Not guaranteed to generate safe or fully optimized code. - Should not be used in environments where code execution safety is critical without sandboxing. --- ## Training Details ### Training Data - Dataset: [CoNaLa mined-curated](https://huggingface.co/datasets/codeparrot/conala-mined-curated) - Dataset size used: ~7,000 samples ### Training Procedure - **Method:** QLoRA fine-tuning with 4-bit quantization - **Precision:** fp16 mixed precision - **Hardware:** Google Colab T4 (16GB GPU) - **Batch size:** 2 → effective batch 4 with accumulation - **Epochs:** 3 - **Training time:** ~1h 30m --- ## Evaluation ### Testing Data - Held-out validation split (10% of dataset) ### Metrics - **Validation Loss** decreased steadily across epochs - **Qualitative Evaluation:** Generated Python snippets from validation prompts - Example outputs matched reference solutions for common coding tasks ### Example Prompt & Output ``` Prompt: ### Instruction: Write code to convert integer num to list ### Code: Generated: [int(x) for x in str(num)] ``` ## Environmental Impact - Hardware: NVIDIA T4 (16 GB VRAM) - Cloud Provider: Google Colab - Compute Region: Unknown - Training Duration: ~1.5 hours ## Citation @misc{llama3-codeweaver-lora, author = {Mahmoud Alrefaey}, title = {llama3-codeweaver-lora: A QLoRA fine-tuned LLaMA-3 model for code generation}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/mahmoudalrefaey/llama3-codeweaver-lora}}, }