Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,103 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
- **
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
-
|
150 |
-
|
151 |
-
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- llama-3
|
5 |
+
- code-generation
|
6 |
+
- qlora
|
7 |
+
- peft
|
8 |
+
- colab
|
9 |
+
license: llama3
|
10 |
+
datasets:
|
11 |
+
- codeparrot/conala-mined-curated
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
base_model:
|
15 |
+
- meta-llama/Meta-Llama-3-8B
|
16 |
+
pipeline_tag: text-generation
|
17 |
---
|
18 |
|
19 |
+
# Model Card for llama3-codeweaver-lora
|
|
|
|
|
|
|
|
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
+
- **Model name:** llama3-codeweaver-lora
|
24 |
+
- **Developed by:** [mahmoudalrefaey](https://huggingface.co/mahmoudalrefaey)
|
25 |
+
- **Funded by:** None (personal project)
|
26 |
+
- **Finetuned from:** [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
|
27 |
+
- **License:** LLaMA 3 license
|
28 |
|
29 |
+
This is a **LLaMA-3 8B model fine-tuned with QLoRA** on the [CoNaLa mined-curated dataset](https://huggingface.co/datasets/codeparrot/conala-mined-curated) for **code generation tasks**.
|
30 |
+
The adapter was trained on **Google Colab T4 (16GB)** using **fp16 mixed precision** with QLoRA for efficiency.
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
## Uses
|
35 |
|
|
|
|
|
36 |
### Direct Use
|
37 |
+
- Intended for **code generation assistant tasks** such as transforming natural language instructions into Python snippets.
|
38 |
+
- Educational use for learning about LLM fine-tuning with LoRA adapters.
|
39 |
|
40 |
+
### Downstream Use
|
41 |
+
- Can be further fine-tuned on specialized coding datasets (e.g. SQL, JS).
|
42 |
+
- Integration into coding assistants and research projects.
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
### Out-of-Scope Use
|
45 |
+
- Not intended for production-critical code security auditing.
|
46 |
+
- Not guaranteed to generate safe or fully optimized code.
|
47 |
+
- Should not be used in environments where code execution safety is critical without sandboxing.
|
48 |
|
49 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
## Training Details
|
52 |
|
53 |
### Training Data
|
54 |
+
- Dataset: [CoNaLa mined-curated](https://huggingface.co/datasets/codeparrot/conala-mined-curated)
|
55 |
+
- Dataset size used: ~7,000 samples
|
|
|
|
|
56 |
|
57 |
### Training Procedure
|
58 |
+
- **Method:** QLoRA fine-tuning with 4-bit quantization
|
59 |
+
- **Precision:** fp16 mixed precision
|
60 |
+
- **Hardware:** Google Colab T4 (16GB GPU)
|
61 |
+
- **Batch size:** 2 → effective batch 4 with accumulation
|
62 |
+
- **Epochs:** 3
|
63 |
+
- **Training time:** ~1h 30m
|
64 |
|
65 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
## Evaluation
|
68 |
|
69 |
+
### Testing Data
|
70 |
+
- Held-out validation split (10% of dataset)
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
### Metrics
|
73 |
+
- **Validation Loss** decreased steadily across epochs
|
74 |
+
- **Qualitative Evaluation:** Generated Python snippets from validation prompts
|
75 |
+
- Example outputs matched reference solutions for common coding tasks
|
76 |
|
77 |
+
### Example Prompt & Output
|
78 |
+
```
|
79 |
+
Prompt:
|
80 |
+
### Instruction:
|
81 |
+
Write code to convert integer num to list
|
82 |
|
83 |
+
### Code:
|
84 |
|
85 |
+
Generated:
|
86 |
+
[int(x) for x in str(num)]
|
87 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
## Environmental Impact
|
90 |
|
91 |
+
- Hardware: NVIDIA T4 (16 GB VRAM)
|
92 |
+
- Cloud Provider: Google Colab
|
93 |
+
- Compute Region: Unknown
|
94 |
+
- Training Duration: ~1.5 hours
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
@misc{llama3-codeweaver-lora,
|
98 |
+
author = {Mahmoud Alrefaey},
|
99 |
+
title = {llama3-codeweaver-lora: A QLoRA fine-tuned LLaMA-3 model for code generation},
|
100 |
+
year = {2025},
|
101 |
+
publisher = {Hugging Face},
|
102 |
+
howpublished = {\url{https://huggingface.co/mahmoudalrefaey/llama3-codeweaver-lora}},
|
103 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|