--- base_model: mistralai/Mistral-7B-v0.1 library_name: peft license: apache-2.0 tags: - axolotl - generated_from_trainer model-index: - name: mistral-test-alpaca results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: sample_data/alpaca_synth_queries.jsonl type: sharegpt conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./ft-v1 hub_model_id: mahendra0203/mistral-test-alpaca adapter: qlora lora_model_dir: sequence_len: 512 # Reduced from 896 sample_packing: true # Enable sample packing eval_sample_packing: false pad_to_sequence_len: false # Changed to false lora_r: 16 # Reduced from 32 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: ft-alpaca-mistral-hc wandb_entity: mahendra0203 gradient_accumulation_steps: 8 # Increased from 4 micro_batch_size: 4 # Reduced from 16 eval_batch_size: 4 # Reduced from 16 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 max_grad_norm: 1.0 adam_beta2: 0.95 adam_epsilon: 0.00001 save_total_limit: 3 # Reduced from 12 train_on_inputs: false group_by_length: true # Changed to true bf16: true # Changed to false fp16: false # Changed to true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: false flash_attention: false loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 20 evals_per_epoch: 2 # Reduced from 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 2 # Reduced from 6 debug: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" save_safetensors: true ```

[Visualize in Weights & Biases](https://wandb.ai/mahendra0203/ft-alpaca-mistral-hc/runs/yp7zk4y6) # mistral-test-alpaca This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 49 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3818 | 0.6667 | 1 | 1.3490 | | 1.3841 | 1.1667 | 2 | 1.3238 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1