Add BERTopic model
Browse files- README.md +68 -0
- config.json +14 -0
- topic_embeddings.safetensors +3 -0
- topics.json +260 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- bertopic
|
5 |
+
library_name: bertopic
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
---
|
8 |
+
|
9 |
+
# saxa3-capstone
|
10 |
+
|
11 |
+
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
12 |
+
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
To use this model, please install BERTopic:
|
17 |
+
|
18 |
+
```
|
19 |
+
pip install -U bertopic
|
20 |
+
```
|
21 |
+
|
22 |
+
You can use the model as follows:
|
23 |
+
|
24 |
+
```python
|
25 |
+
from bertopic import BERTopic
|
26 |
+
topic_model = BERTopic.load("magica1/saxa3-capstone")
|
27 |
+
|
28 |
+
topic_model.get_topic_info()
|
29 |
+
```
|
30 |
+
|
31 |
+
## Topic overview
|
32 |
+
|
33 |
+
* Number of topics: 1
|
34 |
+
* Number of training documents: 196
|
35 |
+
|
36 |
+
<details>
|
37 |
+
<summary>Click here for an overview of all topics.</summary>
|
38 |
+
|
39 |
+
| Topic ID | Topic Keywords | Topic Frequency | Label |
|
40 |
+
|----------|----------------|-----------------|-------|
|
41 |
+
| -1 | medical - advisory - outreach - health - employment | 196 | -1_medical_advisory_outreach_health |
|
42 |
+
|
43 |
+
</details>
|
44 |
+
|
45 |
+
## Training hyperparameters
|
46 |
+
|
47 |
+
* calculate_probabilities: False
|
48 |
+
* language: None
|
49 |
+
* low_memory: False
|
50 |
+
* min_topic_size: 10
|
51 |
+
* n_gram_range: (1, 1)
|
52 |
+
* nr_topics: None
|
53 |
+
* seed_topic_list: None
|
54 |
+
* top_n_words: 10
|
55 |
+
* verbose: False
|
56 |
+
|
57 |
+
## Framework versions
|
58 |
+
|
59 |
+
* Numpy: 1.23.5
|
60 |
+
* HDBSCAN: 0.8.33
|
61 |
+
* UMAP: 0.5.4
|
62 |
+
* Pandas: 2.1.2
|
63 |
+
* Scikit-Learn: 1.2.2
|
64 |
+
* Sentence-transformers: 2.2.2
|
65 |
+
* Transformers: 4.35.0
|
66 |
+
* Numba: 0.56.4
|
67 |
+
* Plotly: 5.15.0
|
68 |
+
* Python: 3.10.12
|
config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"calculate_probabilities": false,
|
3 |
+
"language": null,
|
4 |
+
"low_memory": false,
|
5 |
+
"min_topic_size": 10,
|
6 |
+
"n_gram_range": [
|
7 |
+
1,
|
8 |
+
1
|
9 |
+
],
|
10 |
+
"nr_topics": null,
|
11 |
+
"seed_topic_list": null,
|
12 |
+
"top_n_words": 10,
|
13 |
+
"verbose": false
|
14 |
+
}
|
topic_embeddings.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8d97a65d10a07eda38703db03edb0bf5fde5781b525a745c9eb914046c356d9
|
3 |
+
size 3160
|
topics.json
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"topic_representations": {
|
3 |
+
"-1": [
|
4 |
+
[
|
5 |
+
"medical",
|
6 |
+
0.3849537968635559
|
7 |
+
],
|
8 |
+
[
|
9 |
+
"advisory",
|
10 |
+
0.33897143602371216
|
11 |
+
],
|
12 |
+
[
|
13 |
+
"outreach",
|
14 |
+
0.3324600160121918
|
15 |
+
],
|
16 |
+
[
|
17 |
+
"health",
|
18 |
+
0.32809799909591675
|
19 |
+
],
|
20 |
+
[
|
21 |
+
"employment",
|
22 |
+
0.32660070061683655
|
23 |
+
],
|
24 |
+
[
|
25 |
+
"military",
|
26 |
+
0.32183846831321716
|
27 |
+
],
|
28 |
+
[
|
29 |
+
"trauma",
|
30 |
+
0.3200075030326843
|
31 |
+
],
|
32 |
+
[
|
33 |
+
"assessment",
|
34 |
+
0.31925612688064575
|
35 |
+
],
|
36 |
+
[
|
37 |
+
"effectiveness",
|
38 |
+
0.31517350673675537
|
39 |
+
],
|
40 |
+
[
|
41 |
+
"support",
|
42 |
+
0.30763348937034607
|
43 |
+
]
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"topics": [
|
47 |
+
-1,
|
48 |
+
-1,
|
49 |
+
-1,
|
50 |
+
-1,
|
51 |
+
-1,
|
52 |
+
-1,
|
53 |
+
-1,
|
54 |
+
-1,
|
55 |
+
-1,
|
56 |
+
-1,
|
57 |
+
-1,
|
58 |
+
-1,
|
59 |
+
-1,
|
60 |
+
-1,
|
61 |
+
-1,
|
62 |
+
-1,
|
63 |
+
-1,
|
64 |
+
-1,
|
65 |
+
-1,
|
66 |
+
-1,
|
67 |
+
-1,
|
68 |
+
-1,
|
69 |
+
-1,
|
70 |
+
-1,
|
71 |
+
-1,
|
72 |
+
-1,
|
73 |
+
-1,
|
74 |
+
-1,
|
75 |
+
-1,
|
76 |
+
-1,
|
77 |
+
-1,
|
78 |
+
-1,
|
79 |
+
-1,
|
80 |
+
-1,
|
81 |
+
-1,
|
82 |
+
-1,
|
83 |
+
-1,
|
84 |
+
-1,
|
85 |
+
-1,
|
86 |
+
-1,
|
87 |
+
-1,
|
88 |
+
-1,
|
89 |
+
-1,
|
90 |
+
-1,
|
91 |
+
-1,
|
92 |
+
-1,
|
93 |
+
-1,
|
94 |
+
-1,
|
95 |
+
-1,
|
96 |
+
-1,
|
97 |
+
-1,
|
98 |
+
-1,
|
99 |
+
-1,
|
100 |
+
-1,
|
101 |
+
-1,
|
102 |
+
-1,
|
103 |
+
-1,
|
104 |
+
-1,
|
105 |
+
-1,
|
106 |
+
-1,
|
107 |
+
-1,
|
108 |
+
-1,
|
109 |
+
-1,
|
110 |
+
-1,
|
111 |
+
-1,
|
112 |
+
-1,
|
113 |
+
-1,
|
114 |
+
-1,
|
115 |
+
-1,
|
116 |
+
-1,
|
117 |
+
-1,
|
118 |
+
-1,
|
119 |
+
-1,
|
120 |
+
-1,
|
121 |
+
-1,
|
122 |
+
-1,
|
123 |
+
-1,
|
124 |
+
-1,
|
125 |
+
-1,
|
126 |
+
-1,
|
127 |
+
-1,
|
128 |
+
-1,
|
129 |
+
-1,
|
130 |
+
-1,
|
131 |
+
-1,
|
132 |
+
-1,
|
133 |
+
-1,
|
134 |
+
-1,
|
135 |
+
-1,
|
136 |
+
-1,
|
137 |
+
-1,
|
138 |
+
-1,
|
139 |
+
-1,
|
140 |
+
-1,
|
141 |
+
-1,
|
142 |
+
-1,
|
143 |
+
-1,
|
144 |
+
-1,
|
145 |
+
-1,
|
146 |
+
-1,
|
147 |
+
-1,
|
148 |
+
-1,
|
149 |
+
-1,
|
150 |
+
-1,
|
151 |
+
-1,
|
152 |
+
-1,
|
153 |
+
-1,
|
154 |
+
-1,
|
155 |
+
-1,
|
156 |
+
-1,
|
157 |
+
-1,
|
158 |
+
-1,
|
159 |
+
-1,
|
160 |
+
-1,
|
161 |
+
-1,
|
162 |
+
-1,
|
163 |
+
-1,
|
164 |
+
-1,
|
165 |
+
-1,
|
166 |
+
-1,
|
167 |
+
-1,
|
168 |
+
-1,
|
169 |
+
-1,
|
170 |
+
-1,
|
171 |
+
-1,
|
172 |
+
-1,
|
173 |
+
-1,
|
174 |
+
-1,
|
175 |
+
-1,
|
176 |
+
-1,
|
177 |
+
-1,
|
178 |
+
-1,
|
179 |
+
-1,
|
180 |
+
-1,
|
181 |
+
-1,
|
182 |
+
-1,
|
183 |
+
-1,
|
184 |
+
-1,
|
185 |
+
-1,
|
186 |
+
-1,
|
187 |
+
-1,
|
188 |
+
-1,
|
189 |
+
-1,
|
190 |
+
-1,
|
191 |
+
-1,
|
192 |
+
-1,
|
193 |
+
-1,
|
194 |
+
-1,
|
195 |
+
-1,
|
196 |
+
-1,
|
197 |
+
-1,
|
198 |
+
-1,
|
199 |
+
-1,
|
200 |
+
-1,
|
201 |
+
-1,
|
202 |
+
-1,
|
203 |
+
-1,
|
204 |
+
-1,
|
205 |
+
-1,
|
206 |
+
-1,
|
207 |
+
-1,
|
208 |
+
-1,
|
209 |
+
-1,
|
210 |
+
-1,
|
211 |
+
-1,
|
212 |
+
-1,
|
213 |
+
-1,
|
214 |
+
-1,
|
215 |
+
-1,
|
216 |
+
-1,
|
217 |
+
-1,
|
218 |
+
-1,
|
219 |
+
-1,
|
220 |
+
-1,
|
221 |
+
-1,
|
222 |
+
-1,
|
223 |
+
-1,
|
224 |
+
-1,
|
225 |
+
-1,
|
226 |
+
-1,
|
227 |
+
-1,
|
228 |
+
-1,
|
229 |
+
-1,
|
230 |
+
-1,
|
231 |
+
-1,
|
232 |
+
-1,
|
233 |
+
-1,
|
234 |
+
-1,
|
235 |
+
-1,
|
236 |
+
-1,
|
237 |
+
-1,
|
238 |
+
-1,
|
239 |
+
-1,
|
240 |
+
-1,
|
241 |
+
-1,
|
242 |
+
-1
|
243 |
+
],
|
244 |
+
"topic_sizes": {
|
245 |
+
"-1": 196
|
246 |
+
},
|
247 |
+
"topic_mapper": [
|
248 |
+
[
|
249 |
+
-1,
|
250 |
+
-1,
|
251 |
+
-1
|
252 |
+
]
|
253 |
+
],
|
254 |
+
"topic_labels": {
|
255 |
+
"-1": "-1_medical_advisory_outreach_health"
|
256 |
+
},
|
257 |
+
"custom_labels": null,
|
258 |
+
"_outliers": 1,
|
259 |
+
"topic_aspects": {}
|
260 |
+
}
|