magica1 commited on
Commit
5596388
·
1 Parent(s): 630117a

Add BERTopic model

Browse files
Files changed (4) hide show
  1. README.md +68 -0
  2. config.json +14 -0
  3. topic_embeddings.safetensors +3 -0
  4. topics.json +260 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - bertopic
5
+ library_name: bertopic
6
+ pipeline_tag: text-classification
7
+ ---
8
+
9
+ # saxa3-capstone
10
+
11
+ This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
12
+ BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
13
+
14
+ ## Usage
15
+
16
+ To use this model, please install BERTopic:
17
+
18
+ ```
19
+ pip install -U bertopic
20
+ ```
21
+
22
+ You can use the model as follows:
23
+
24
+ ```python
25
+ from bertopic import BERTopic
26
+ topic_model = BERTopic.load("magica1/saxa3-capstone")
27
+
28
+ topic_model.get_topic_info()
29
+ ```
30
+
31
+ ## Topic overview
32
+
33
+ * Number of topics: 1
34
+ * Number of training documents: 196
35
+
36
+ <details>
37
+ <summary>Click here for an overview of all topics.</summary>
38
+
39
+ | Topic ID | Topic Keywords | Topic Frequency | Label |
40
+ |----------|----------------|-----------------|-------|
41
+ | -1 | medical - advisory - outreach - health - employment | 196 | -1_medical_advisory_outreach_health |
42
+
43
+ </details>
44
+
45
+ ## Training hyperparameters
46
+
47
+ * calculate_probabilities: False
48
+ * language: None
49
+ * low_memory: False
50
+ * min_topic_size: 10
51
+ * n_gram_range: (1, 1)
52
+ * nr_topics: None
53
+ * seed_topic_list: None
54
+ * top_n_words: 10
55
+ * verbose: False
56
+
57
+ ## Framework versions
58
+
59
+ * Numpy: 1.23.5
60
+ * HDBSCAN: 0.8.33
61
+ * UMAP: 0.5.4
62
+ * Pandas: 2.1.2
63
+ * Scikit-Learn: 1.2.2
64
+ * Sentence-transformers: 2.2.2
65
+ * Transformers: 4.35.0
66
+ * Numba: 0.56.4
67
+ * Plotly: 5.15.0
68
+ * Python: 3.10.12
config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "calculate_probabilities": false,
3
+ "language": null,
4
+ "low_memory": false,
5
+ "min_topic_size": 10,
6
+ "n_gram_range": [
7
+ 1,
8
+ 1
9
+ ],
10
+ "nr_topics": null,
11
+ "seed_topic_list": null,
12
+ "top_n_words": 10,
13
+ "verbose": false
14
+ }
topic_embeddings.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8d97a65d10a07eda38703db03edb0bf5fde5781b525a745c9eb914046c356d9
3
+ size 3160
topics.json ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "topic_representations": {
3
+ "-1": [
4
+ [
5
+ "medical",
6
+ 0.3849537968635559
7
+ ],
8
+ [
9
+ "advisory",
10
+ 0.33897143602371216
11
+ ],
12
+ [
13
+ "outreach",
14
+ 0.3324600160121918
15
+ ],
16
+ [
17
+ "health",
18
+ 0.32809799909591675
19
+ ],
20
+ [
21
+ "employment",
22
+ 0.32660070061683655
23
+ ],
24
+ [
25
+ "military",
26
+ 0.32183846831321716
27
+ ],
28
+ [
29
+ "trauma",
30
+ 0.3200075030326843
31
+ ],
32
+ [
33
+ "assessment",
34
+ 0.31925612688064575
35
+ ],
36
+ [
37
+ "effectiveness",
38
+ 0.31517350673675537
39
+ ],
40
+ [
41
+ "support",
42
+ 0.30763348937034607
43
+ ]
44
+ ]
45
+ },
46
+ "topics": [
47
+ -1,
48
+ -1,
49
+ -1,
50
+ -1,
51
+ -1,
52
+ -1,
53
+ -1,
54
+ -1,
55
+ -1,
56
+ -1,
57
+ -1,
58
+ -1,
59
+ -1,
60
+ -1,
61
+ -1,
62
+ -1,
63
+ -1,
64
+ -1,
65
+ -1,
66
+ -1,
67
+ -1,
68
+ -1,
69
+ -1,
70
+ -1,
71
+ -1,
72
+ -1,
73
+ -1,
74
+ -1,
75
+ -1,
76
+ -1,
77
+ -1,
78
+ -1,
79
+ -1,
80
+ -1,
81
+ -1,
82
+ -1,
83
+ -1,
84
+ -1,
85
+ -1,
86
+ -1,
87
+ -1,
88
+ -1,
89
+ -1,
90
+ -1,
91
+ -1,
92
+ -1,
93
+ -1,
94
+ -1,
95
+ -1,
96
+ -1,
97
+ -1,
98
+ -1,
99
+ -1,
100
+ -1,
101
+ -1,
102
+ -1,
103
+ -1,
104
+ -1,
105
+ -1,
106
+ -1,
107
+ -1,
108
+ -1,
109
+ -1,
110
+ -1,
111
+ -1,
112
+ -1,
113
+ -1,
114
+ -1,
115
+ -1,
116
+ -1,
117
+ -1,
118
+ -1,
119
+ -1,
120
+ -1,
121
+ -1,
122
+ -1,
123
+ -1,
124
+ -1,
125
+ -1,
126
+ -1,
127
+ -1,
128
+ -1,
129
+ -1,
130
+ -1,
131
+ -1,
132
+ -1,
133
+ -1,
134
+ -1,
135
+ -1,
136
+ -1,
137
+ -1,
138
+ -1,
139
+ -1,
140
+ -1,
141
+ -1,
142
+ -1,
143
+ -1,
144
+ -1,
145
+ -1,
146
+ -1,
147
+ -1,
148
+ -1,
149
+ -1,
150
+ -1,
151
+ -1,
152
+ -1,
153
+ -1,
154
+ -1,
155
+ -1,
156
+ -1,
157
+ -1,
158
+ -1,
159
+ -1,
160
+ -1,
161
+ -1,
162
+ -1,
163
+ -1,
164
+ -1,
165
+ -1,
166
+ -1,
167
+ -1,
168
+ -1,
169
+ -1,
170
+ -1,
171
+ -1,
172
+ -1,
173
+ -1,
174
+ -1,
175
+ -1,
176
+ -1,
177
+ -1,
178
+ -1,
179
+ -1,
180
+ -1,
181
+ -1,
182
+ -1,
183
+ -1,
184
+ -1,
185
+ -1,
186
+ -1,
187
+ -1,
188
+ -1,
189
+ -1,
190
+ -1,
191
+ -1,
192
+ -1,
193
+ -1,
194
+ -1,
195
+ -1,
196
+ -1,
197
+ -1,
198
+ -1,
199
+ -1,
200
+ -1,
201
+ -1,
202
+ -1,
203
+ -1,
204
+ -1,
205
+ -1,
206
+ -1,
207
+ -1,
208
+ -1,
209
+ -1,
210
+ -1,
211
+ -1,
212
+ -1,
213
+ -1,
214
+ -1,
215
+ -1,
216
+ -1,
217
+ -1,
218
+ -1,
219
+ -1,
220
+ -1,
221
+ -1,
222
+ -1,
223
+ -1,
224
+ -1,
225
+ -1,
226
+ -1,
227
+ -1,
228
+ -1,
229
+ -1,
230
+ -1,
231
+ -1,
232
+ -1,
233
+ -1,
234
+ -1,
235
+ -1,
236
+ -1,
237
+ -1,
238
+ -1,
239
+ -1,
240
+ -1,
241
+ -1,
242
+ -1
243
+ ],
244
+ "topic_sizes": {
245
+ "-1": 196
246
+ },
247
+ "topic_mapper": [
248
+ [
249
+ -1,
250
+ -1,
251
+ -1
252
+ ]
253
+ ],
254
+ "topic_labels": {
255
+ "-1": "-1_medical_advisory_outreach_health"
256
+ },
257
+ "custom_labels": null,
258
+ "_outliers": 1,
259
+ "topic_aspects": {}
260
+ }