Upload BacformerForMaskedGM
Browse files- config.json +3 -2
- model.safetensors +2 -2
- modeling_bacformer.py +1340 -0
- utils_bacformer.py +109 -0
config.json
CHANGED
@@ -5,7 +5,8 @@
|
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"auto_map": {
|
8 |
-
"AutoConfig": "configuration_bacformer.BacformerConfig"
|
|
|
9 |
},
|
10 |
"batch_size": 1,
|
11 |
"ckpt_path": null,
|
@@ -65,7 +66,7 @@
|
|
65 |
},
|
66 |
"test": false,
|
67 |
"test_after_train": false,
|
68 |
-
"torch_dtype": "
|
69 |
"train_subset_prop": 1.0,
|
70 |
"transformers_version": "4.50.3",
|
71 |
"warmup_proportion": 0.1,
|
|
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_bacformer.BacformerConfig",
|
9 |
+
"AutoModelForMaskedLM": "modeling_bacformer.BacformerForMaskedGM"
|
10 |
},
|
11 |
"batch_size": 1,
|
12 |
"ckpt_path": null,
|
|
|
66 |
},
|
67 |
"test": false,
|
68 |
"test_after_train": false,
|
69 |
+
"torch_dtype": "bfloat16",
|
70 |
"train_subset_prop": 1.0,
|
71 |
"transformers_version": "4.50.3",
|
72 |
"warmup_proportion": 0.1,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3101482f3465c4dcea62e8e56e284e2212d6713e21ab56531d8966d0ad39c67f
|
3 |
+
size 101724522
|
modeling_bacformer.py
ADDED
@@ -0,0 +1,1340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from collections import OrderedDict
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Literal, Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn.functional import (
|
9 |
+
binary_cross_entropy_with_logits,
|
10 |
+
cross_entropy,
|
11 |
+
gelu,
|
12 |
+
mse_loss,
|
13 |
+
scaled_dot_product_attention,
|
14 |
+
softmax,
|
15 |
+
)
|
16 |
+
from transformers import PreTrainedModel
|
17 |
+
from transformers.utils import ModelOutput
|
18 |
+
|
19 |
+
from .configuration_bacformer import SPECIAL_TOKENS_DICT, BacformerConfig
|
20 |
+
from .utils_bacformer import compute_contrastive_loss, create_4d_from_2d_attn_mask, top_k_filtering, top_p_filtering
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class BacformerModelOutput(ModelOutput):
|
25 |
+
"""Base class for outputs of the Bacformer model."""
|
26 |
+
|
27 |
+
loss: torch.FloatTensor | None = None
|
28 |
+
logits: torch.FloatTensor = None
|
29 |
+
last_hidden_state: torch.FloatTensor | None = None
|
30 |
+
attentions: Union[torch.FloatTensor, None] = None
|
31 |
+
pooler_output: torch.FloatTensor | None = None
|
32 |
+
|
33 |
+
|
34 |
+
# Taken from facebookresearch/llama/model.py
|
35 |
+
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
36 |
+
"""Reshape the rotary embeddings for broadcasting."""
|
37 |
+
ndim = x.ndim
|
38 |
+
assert 0 <= 1 < ndim
|
39 |
+
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
40 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
41 |
+
return freqs_cis.view(*shape)
|
42 |
+
|
43 |
+
|
44 |
+
# Taken from facebookresearch/llama/model.py
|
45 |
+
def apply_rotary_emb(
|
46 |
+
xq: torch.Tensor,
|
47 |
+
xk: torch.Tensor,
|
48 |
+
freqs_cos: torch.Tensor,
|
49 |
+
freqs_sin: torch.Tensor,
|
50 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
51 |
+
"""Apply rotary embeddings to the query and key tensors."""
|
52 |
+
# reshape xq and xk to match the complex representation
|
53 |
+
xq_r, xq_i = xq.float().reshape(*xq.shape[:-1], -1, 2).unbind(-1)
|
54 |
+
xk_r, xk_i = xk.float().reshape(*xk.shape[:-1], -1, 2).unbind(-1)
|
55 |
+
|
56 |
+
# reshape freqs_cos and freqs_sin for broadcasting
|
57 |
+
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
|
58 |
+
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
|
59 |
+
|
60 |
+
# apply rotation using real numbers
|
61 |
+
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
62 |
+
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
63 |
+
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
|
64 |
+
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
|
65 |
+
|
66 |
+
# flatten last two dimensions
|
67 |
+
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
|
68 |
+
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
|
69 |
+
|
70 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
71 |
+
|
72 |
+
|
73 |
+
# Taken from facebookresearch/llama/model.py
|
74 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
75 |
+
"""Precompute the freqs cis for rotary embeddings."""
|
76 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
77 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
78 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
79 |
+
|
80 |
+
freqs_cos = torch.cos(freqs) # real part
|
81 |
+
freqs_sin = torch.sin(freqs) # imaginary part
|
82 |
+
return freqs_cos, freqs_sin
|
83 |
+
|
84 |
+
|
85 |
+
def scaled_dot_product_attention_w_attn_weights(
|
86 |
+
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
|
87 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
88 |
+
"""PyTorch Native implementation, modified to return attention weights."""
|
89 |
+
L, S = query.size(-2), key.size(-2)
|
90 |
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
91 |
+
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
|
92 |
+
if is_causal:
|
93 |
+
assert attn_mask is None
|
94 |
+
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
95 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
96 |
+
attn_bias.to(query.dtype)
|
97 |
+
|
98 |
+
if attn_mask is not None:
|
99 |
+
if attn_mask.dtype == torch.bool:
|
100 |
+
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
101 |
+
else:
|
102 |
+
attn_bias += attn_mask
|
103 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
104 |
+
attn_weight += attn_bias
|
105 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
106 |
+
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
107 |
+
attn_output = attn_weight @ value
|
108 |
+
return attn_output, attn_weight
|
109 |
+
|
110 |
+
|
111 |
+
class RotarySelfAttention(nn.Module):
|
112 |
+
"""Rotary self-attention module."""
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
embed_dim: int,
|
117 |
+
num_heads: int,
|
118 |
+
dropout: float = 0.1,
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
self.embed_dim = embed_dim
|
122 |
+
self.num_heads = num_heads
|
123 |
+
self.dim_head = embed_dim // num_heads
|
124 |
+
self.dropout_rate = dropout
|
125 |
+
|
126 |
+
self.q = nn.Linear(embed_dim, embed_dim, bias=False)
|
127 |
+
self.k = nn.Linear(embed_dim, embed_dim, bias=False)
|
128 |
+
self.v = nn.Linear(embed_dim, embed_dim, bias=False)
|
129 |
+
self.att_proj_linear = nn.Linear(embed_dim, embed_dim)
|
130 |
+
|
131 |
+
def forward(
|
132 |
+
self,
|
133 |
+
x: torch.Tensor,
|
134 |
+
attn_mask: torch.Tensor,
|
135 |
+
freqs_cos: torch.Tensor,
|
136 |
+
freqs_sin: torch.Tensor,
|
137 |
+
is_causal: bool = False,
|
138 |
+
return_attn_weights: bool = False,
|
139 |
+
):
|
140 |
+
"""Forward pass for the rotary self-attention module."""
|
141 |
+
batch_size, seq_len, _ = x.shape
|
142 |
+
xq, xk, xv = self.q(x), self.k(x), self.v(x)
|
143 |
+
# Reshape for rotary embeddings
|
144 |
+
xq = xq.view(batch_size, seq_len, self.num_heads, self.dim_head)
|
145 |
+
xk = xk.view(batch_size, seq_len, self.num_heads, self.dim_head)
|
146 |
+
xv = xv.view(batch_size, seq_len, self.num_heads, self.dim_head)
|
147 |
+
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
|
148 |
+
|
149 |
+
# Reshape for attention calculation: (b_sz, n_head, s_len, d_head)
|
150 |
+
xq = xq.transpose(1, 2)
|
151 |
+
xk = xk.transpose(1, 2)
|
152 |
+
xv = xv.transpose(1, 2)
|
153 |
+
|
154 |
+
attn_weights = None
|
155 |
+
if return_attn_weights:
|
156 |
+
att, attn_weights = scaled_dot_product_attention_w_attn_weights(
|
157 |
+
query=xq,
|
158 |
+
key=xk,
|
159 |
+
value=xv,
|
160 |
+
attn_mask=attn_mask,
|
161 |
+
dropout_p=self.dropout_rate if self.training else 0.0,
|
162 |
+
is_causal=is_causal,
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
att = scaled_dot_product_attention(
|
166 |
+
query=xq,
|
167 |
+
key=xk,
|
168 |
+
value=xv,
|
169 |
+
attn_mask=attn_mask,
|
170 |
+
dropout_p=self.dropout_rate if self.training else 0.0,
|
171 |
+
is_causal=is_causal,
|
172 |
+
)
|
173 |
+
# Shape (b_sz, s_len, n_head, d_head)
|
174 |
+
out = att.transpose(1, 2).contiguous()
|
175 |
+
out = out.view(batch_size, seq_len, self.num_heads * self.dim_head)
|
176 |
+
|
177 |
+
return self.att_proj_linear(out), attn_weights
|
178 |
+
|
179 |
+
|
180 |
+
class BacformerTransformerLayer(nn.Module):
|
181 |
+
"""Own implementation of transformer layer which uses pytorch native MHA but returns attention weights"""
|
182 |
+
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
hidden_size: int,
|
186 |
+
intermediate_size: int,
|
187 |
+
num_attention_heads: int,
|
188 |
+
dropout: float = 0.1,
|
189 |
+
activation: Literal["gelu", "relu"] = "gelu",
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
self.self_mha = RotarySelfAttention(
|
193 |
+
embed_dim=hidden_size,
|
194 |
+
num_heads=num_attention_heads,
|
195 |
+
dropout=dropout,
|
196 |
+
)
|
197 |
+
|
198 |
+
self.fc1 = nn.Linear(hidden_size, intermediate_size)
|
199 |
+
self.fc2 = nn.Linear(intermediate_size, hidden_size)
|
200 |
+
self.activation = nn.GELU() if activation == "gelu" else nn.ReLU()
|
201 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
202 |
+
self.norm2 = nn.LayerNorm(hidden_size)
|
203 |
+
self.dropout1 = nn.Dropout(dropout)
|
204 |
+
self.dropout2 = nn.Dropout(dropout)
|
205 |
+
self.dropout3 = nn.Dropout(dropout)
|
206 |
+
|
207 |
+
def forward(
|
208 |
+
self,
|
209 |
+
hidden_state: torch.Tensor,
|
210 |
+
attention_mask: torch.Tensor = None,
|
211 |
+
freqs_cos: torch.Tensor = None,
|
212 |
+
freqs_sin: torch.Tensor = None,
|
213 |
+
return_attn_weights: bool = False,
|
214 |
+
is_causal: bool = False,
|
215 |
+
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
216 |
+
"""Forward pass"""
|
217 |
+
attn_outputs, attn_weights = self.self_mha(
|
218 |
+
hidden_state,
|
219 |
+
attn_mask=attention_mask,
|
220 |
+
freqs_cos=freqs_cos,
|
221 |
+
freqs_sin=freqs_sin,
|
222 |
+
return_attn_weights=return_attn_weights,
|
223 |
+
is_causal=is_causal,
|
224 |
+
)
|
225 |
+
x = self.norm1(hidden_state + self.dropout1(attn_outputs))
|
226 |
+
ff_output = self.fc2(self.dropout2(self.activation(self.fc1(x))))
|
227 |
+
x = self.norm2(x + self.dropout3(ff_output))
|
228 |
+
return x, attn_weights
|
229 |
+
|
230 |
+
|
231 |
+
class BacformerTransformerEncoder(nn.Module):
|
232 |
+
"""Own implementation of Transformer which return attention weights"""
|
233 |
+
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
num_hidden_layers: int,
|
237 |
+
hidden_size: int,
|
238 |
+
intermediate_size: int,
|
239 |
+
num_attention_heads: int,
|
240 |
+
dropout: float = 0.1,
|
241 |
+
activation: Literal["gelu", "relu"] = "gelu",
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
|
245 |
+
self.layers = nn.ModuleList(
|
246 |
+
[
|
247 |
+
BacformerTransformerLayer(
|
248 |
+
hidden_size=hidden_size,
|
249 |
+
intermediate_size=intermediate_size,
|
250 |
+
num_attention_heads=num_attention_heads,
|
251 |
+
dropout=dropout,
|
252 |
+
activation=activation,
|
253 |
+
)
|
254 |
+
for _ in range(num_hidden_layers)
|
255 |
+
]
|
256 |
+
)
|
257 |
+
self.gradient_checkpointing = False
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
hidden_state: torch.Tensor,
|
262 |
+
attention_mask: torch.Tensor = None,
|
263 |
+
freqs_cos: torch.Tensor = None,
|
264 |
+
freqs_sin: torch.Tensor = None,
|
265 |
+
return_attn_weights: bool = False,
|
266 |
+
is_causal: bool = False,
|
267 |
+
) -> tuple[torch.Tensor, list[torch.Tensor | None]]:
|
268 |
+
"""Forward pass"""
|
269 |
+
attn_weights_arr = []
|
270 |
+
for layer in self.layers:
|
271 |
+
if self.gradient_checkpointing and self.training:
|
272 |
+
hidden_state, attn_weights = self._gradient_checkpointing_func(
|
273 |
+
layer.__call__,
|
274 |
+
hidden_state,
|
275 |
+
attention_mask,
|
276 |
+
freqs_cos,
|
277 |
+
freqs_sin,
|
278 |
+
return_attn_weights,
|
279 |
+
is_causal,
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
hidden_state, attn_weights = layer(
|
283 |
+
hidden_state=hidden_state,
|
284 |
+
attention_mask=attention_mask,
|
285 |
+
freqs_cos=freqs_cos,
|
286 |
+
freqs_sin=freqs_sin,
|
287 |
+
return_attn_weights=return_attn_weights,
|
288 |
+
is_causal=is_causal,
|
289 |
+
)
|
290 |
+
# keep the attention weights from each layer
|
291 |
+
attn_weights_arr.append(attn_weights)
|
292 |
+
return hidden_state, attn_weights_arr
|
293 |
+
|
294 |
+
|
295 |
+
class BacformerEmbeddings(nn.Module):
|
296 |
+
"""Construct the protein embeddings from protein sequence, position embeddings and sequence type embeddings."""
|
297 |
+
|
298 |
+
def __init__(self, config):
|
299 |
+
super().__init__()
|
300 |
+
self.config = config
|
301 |
+
self.linear = nn.Linear(config.hidden_size, config.hidden_size)
|
302 |
+
|
303 |
+
self.token_type_embeddings = nn.Embedding(
|
304 |
+
num_embeddings=config.max_token_type_embeddings + 1,
|
305 |
+
embedding_dim=config.hidden_size,
|
306 |
+
padding_idx=config.max_token_type_embeddings,
|
307 |
+
)
|
308 |
+
|
309 |
+
self.special_tokens_embeddings = nn.Embedding(
|
310 |
+
num_embeddings=config.num_special_tokens,
|
311 |
+
embedding_dim=config.hidden_size,
|
312 |
+
)
|
313 |
+
self.prot_emb_token_id = config.prot_emb_token_id
|
314 |
+
self.pad_token_id = config.pad_token_id
|
315 |
+
|
316 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
317 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
318 |
+
|
319 |
+
def forward(
|
320 |
+
self,
|
321 |
+
protein_embeddings: torch.Tensor = None,
|
322 |
+
special_tokens_mask: torch.Tensor = None,
|
323 |
+
token_type_ids: torch.Tensor = None,
|
324 |
+
labels: torch.Tensor = None, # used for causal protein family modeling
|
325 |
+
property_ids: torch.Tensor = None, # used for conditional fine-tuning for desired property
|
326 |
+
) -> torch.Tensor:
|
327 |
+
"""Forward pass for protein embeddings."""
|
328 |
+
bs, seq_length, dim = protein_embeddings.shape
|
329 |
+
|
330 |
+
# pass the pooled ESM protein embeddings through a linear layer
|
331 |
+
protein_embeddings = self.linear(protein_embeddings)
|
332 |
+
protein_embeddings = torch.where(
|
333 |
+
special_tokens_mask.unsqueeze(-1).repeat(1, 1, dim) == self.prot_emb_token_id,
|
334 |
+
protein_embeddings,
|
335 |
+
self.special_tokens_embeddings(special_tokens_mask),
|
336 |
+
)
|
337 |
+
|
338 |
+
if token_type_ids is not None:
|
339 |
+
protein_embeddings += self.token_type_embeddings(token_type_ids)
|
340 |
+
|
341 |
+
protein_embeddings = self.LayerNorm(protein_embeddings)
|
342 |
+
protein_embeddings = self.dropout(protein_embeddings)
|
343 |
+
return protein_embeddings
|
344 |
+
|
345 |
+
|
346 |
+
class BacformerProteinFamilyEmbeddings(nn.Module):
|
347 |
+
"""Construct the protein embeddings from protein family tokens, special tokens and sequence type embeddings."""
|
348 |
+
|
349 |
+
def __init__(
|
350 |
+
self,
|
351 |
+
config,
|
352 |
+
protein_family_embeddings: torch.Tensor = None,
|
353 |
+
token_type_embeddings: torch.Tensor = None,
|
354 |
+
special_tokens_embeddings: torch.Tensor = None,
|
355 |
+
n_conditional_properties: int = None,
|
356 |
+
):
|
357 |
+
super().__init__()
|
358 |
+
self.config = config
|
359 |
+
|
360 |
+
if protein_family_embeddings is not None:
|
361 |
+
self.protein_family_embeddings = nn.Embedding.from_pretrained(
|
362 |
+
protein_family_embeddings,
|
363 |
+
freeze=False,
|
364 |
+
padding_idx=config.pad_token_id,
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
self.protein_family_embeddings = nn.Embedding(
|
368 |
+
num_embeddings=config.protein_clusters_vocab_size + 1,
|
369 |
+
embedding_dim=config.hidden_size,
|
370 |
+
padding_idx=config.pad_token_id,
|
371 |
+
)
|
372 |
+
|
373 |
+
if token_type_embeddings is not None:
|
374 |
+
self.token_type_embeddings = nn.Embedding.from_pretrained(
|
375 |
+
token_type_embeddings,
|
376 |
+
freeze=False,
|
377 |
+
padding_idx=config.max_token_type_embeddings,
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
self.token_type_embeddings = nn.Embedding(
|
381 |
+
num_embeddings=config.max_token_type_embeddings + 1,
|
382 |
+
embedding_dim=config.hidden_size,
|
383 |
+
padding_idx=config.max_token_type_embeddings,
|
384 |
+
)
|
385 |
+
|
386 |
+
if special_tokens_embeddings is not None:
|
387 |
+
self.special_tokens_embeddings = nn.Embedding.from_pretrained(
|
388 |
+
special_tokens_embeddings,
|
389 |
+
freeze=False,
|
390 |
+
padding_idx=config.pad_token_id,
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
self.special_tokens_embeddings = nn.Embedding(
|
394 |
+
num_embeddings=config.num_special_tokens,
|
395 |
+
embedding_dim=config.hidden_size,
|
396 |
+
padding_idx=config.pad_token_id,
|
397 |
+
)
|
398 |
+
|
399 |
+
# add layer for conditional properties
|
400 |
+
if n_conditional_properties is not None:
|
401 |
+
self.conditional_properties_layer = nn.Embedding(n_conditional_properties, config.hidden_size)
|
402 |
+
|
403 |
+
self.prot_emb_token_id = config.prot_emb_token_id
|
404 |
+
self.pad_token_id = config.pad_token_id
|
405 |
+
|
406 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
407 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
408 |
+
|
409 |
+
def forward(
|
410 |
+
self,
|
411 |
+
protein_embeddings: torch.Tensor = None,
|
412 |
+
special_tokens_mask: torch.Tensor = None,
|
413 |
+
token_type_ids: torch.Tensor = None,
|
414 |
+
labels: torch.Tensor = None, # used for causal protein family modeling
|
415 |
+
property_ids: torch.Tensor = None, # used for conditional fine-tuning for desired property
|
416 |
+
) -> torch.Tensor:
|
417 |
+
"""Forward pass for protein embeddings."""
|
418 |
+
# pass the pooled ESM protein embeddings through a linear layer
|
419 |
+
# replace -100 with pad_token_id
|
420 |
+
labels[labels == -100] = self.pad_token_id
|
421 |
+
protein_embeddings = self.protein_family_embeddings(labels)
|
422 |
+
|
423 |
+
bs, seq_length, dim = protein_embeddings.shape
|
424 |
+
protein_embeddings = torch.where(
|
425 |
+
special_tokens_mask.unsqueeze(-1).repeat(1, 1, dim) == self.prot_emb_token_id,
|
426 |
+
protein_embeddings,
|
427 |
+
self.special_tokens_embeddings(special_tokens_mask),
|
428 |
+
)
|
429 |
+
|
430 |
+
if token_type_ids is not None:
|
431 |
+
protein_embeddings += self.token_type_embeddings(token_type_ids)
|
432 |
+
|
433 |
+
if property_ids is not None:
|
434 |
+
# get the embeddings for the conditional properties
|
435 |
+
property_embedding = self.conditional_properties_layer(property_ids).unsqueeze(1)
|
436 |
+
# concatenate the protein embeddings with the conditional properties embeddings
|
437 |
+
# property embeddings are added to the beginning of the protein embeddings after the CLS token
|
438 |
+
protein_embeddings = torch.cat(
|
439 |
+
[
|
440 |
+
protein_embeddings[:, :1, :], # CLS token
|
441 |
+
property_embedding, # conditional properties embeddings
|
442 |
+
protein_embeddings[:, 1:, :],
|
443 |
+
], # protein embeddings
|
444 |
+
dim=1,
|
445 |
+
)
|
446 |
+
|
447 |
+
protein_embeddings = self.LayerNorm(protein_embeddings)
|
448 |
+
protein_embeddings = self.dropout(protein_embeddings)
|
449 |
+
return protein_embeddings
|
450 |
+
|
451 |
+
|
452 |
+
class BacformerEncoder(nn.Module):
|
453 |
+
"""Bacformer encoder model"""
|
454 |
+
|
455 |
+
def __init__(self, config):
|
456 |
+
super().__init__()
|
457 |
+
self.config = config
|
458 |
+
|
459 |
+
self.encoder = BacformerTransformerEncoder(
|
460 |
+
num_hidden_layers=config.num_hidden_layers,
|
461 |
+
hidden_size=config.hidden_size,
|
462 |
+
num_attention_heads=config.num_attention_heads,
|
463 |
+
intermediate_size=config.intermediate_size,
|
464 |
+
activation="gelu",
|
465 |
+
dropout=config.attention_probs_dropout_prob,
|
466 |
+
)
|
467 |
+
|
468 |
+
# Note that config.max_position_embeddings is multiplied by 1.5 because the token limit for the Bacformer of
|
469 |
+
# models is 6000. Adding this multiplier instead of using 6000 directly allows for dynamism of token
|
470 |
+
# lengths while training or fine-tuning.
|
471 |
+
freqs_cos, freqs_sin = precompute_freqs_cis(
|
472 |
+
config.hidden_size // config.num_attention_heads, int(config.max_position_embeddings * 1.5)
|
473 |
+
)
|
474 |
+
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
|
475 |
+
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
|
476 |
+
|
477 |
+
def forward(
|
478 |
+
self,
|
479 |
+
hidden_states: torch.Tensor,
|
480 |
+
attention_mask: torch.Tensor = None,
|
481 |
+
return_attn_weights: Union[bool, None] = None,
|
482 |
+
is_causal: bool = False,
|
483 |
+
) -> tuple[torch.Tensor, list[torch.Tensor | None]]:
|
484 |
+
"""Pass the input through the encoder layers in turn.
|
485 |
+
|
486 |
+
Args:
|
487 |
+
hidden_states: hidden states from the BacformerEmbeddings layer
|
488 |
+
attention_mask: mask for the attention in the transformer
|
489 |
+
"""
|
490 |
+
return_attn_weights = (
|
491 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
492 |
+
)
|
493 |
+
bs, seq_len, _ = hidden_states.shape
|
494 |
+
last_hidden_state, attn_weights = self.encoder(
|
495 |
+
hidden_state=hidden_states,
|
496 |
+
attention_mask=attention_mask,
|
497 |
+
freqs_cos=self.freqs_cos[:seq_len, :],
|
498 |
+
freqs_sin=self.freqs_sin[:seq_len, :],
|
499 |
+
return_attn_weights=return_attn_weights,
|
500 |
+
is_causal=is_causal,
|
501 |
+
)
|
502 |
+
return last_hidden_state, attn_weights
|
503 |
+
|
504 |
+
|
505 |
+
class BacformerPreTrainedModel(PreTrainedModel):
|
506 |
+
"""An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models."""
|
507 |
+
|
508 |
+
config_class = BacformerConfig
|
509 |
+
base_model_prefix = "bacformer"
|
510 |
+
supports_gradient_checkpointing = True
|
511 |
+
_no_split_modules = ["BacformerEmbeddings", "BacformerTransformerLayer"]
|
512 |
+
|
513 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
514 |
+
def _init_weights(self, module):
|
515 |
+
"""Initialize the weights"""
|
516 |
+
if isinstance(module, nn.Linear):
|
517 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
518 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
519 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
520 |
+
if module.bias is not None:
|
521 |
+
module.bias.data.zero_()
|
522 |
+
elif isinstance(module, nn.Embedding):
|
523 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
524 |
+
if module.padding_idx is not None:
|
525 |
+
module.weight.data[module.padding_idx].zero_()
|
526 |
+
elif isinstance(module, nn.LayerNorm):
|
527 |
+
module.bias.data.zero_()
|
528 |
+
module.weight.data.fill_(1.0)
|
529 |
+
|
530 |
+
|
531 |
+
class BacformerModel(BacformerPreTrainedModel):
|
532 |
+
"""Bacformer model."""
|
533 |
+
|
534 |
+
def __init__(self, config: BacformerConfig, add_pooling_layer: bool = False):
|
535 |
+
super().__init__(config)
|
536 |
+
self.config = config
|
537 |
+
|
538 |
+
self.embeddings = BacformerEmbeddings(config)
|
539 |
+
self.encoder = BacformerEncoder(config)
|
540 |
+
|
541 |
+
self.pooler = BacformerPooler(config) if add_pooling_layer else None
|
542 |
+
|
543 |
+
# Initialize weights and apply final processing
|
544 |
+
self.post_init()
|
545 |
+
|
546 |
+
def forward(
|
547 |
+
self,
|
548 |
+
protein_embeddings: torch.Tensor = None,
|
549 |
+
special_tokens_mask: torch.Tensor = None,
|
550 |
+
token_type_ids: torch.Tensor = None,
|
551 |
+
attention_mask: torch.Tensor = None,
|
552 |
+
labels: torch.Tensor = None,
|
553 |
+
property_ids: torch.Tensor = None,
|
554 |
+
return_attn_weights: bool = False,
|
555 |
+
return_dict: Union[bool, None] = None,
|
556 |
+
is_causal: bool = False,
|
557 |
+
) -> Optional[BacformerModelOutput]:
|
558 |
+
"""Forward method for the model."""
|
559 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
560 |
+
# get embeddings
|
561 |
+
protein_embeddings = self.embeddings(
|
562 |
+
protein_embeddings=protein_embeddings,
|
563 |
+
labels=labels,
|
564 |
+
special_tokens_mask=special_tokens_mask,
|
565 |
+
token_type_ids=token_type_ids,
|
566 |
+
property_ids=property_ids,
|
567 |
+
)
|
568 |
+
|
569 |
+
# create 3D attention mask from 2D if not doing causal GM
|
570 |
+
if attention_mask is not None and not is_causal:
|
571 |
+
attention_mask = create_4d_from_2d_attn_mask(
|
572 |
+
attn_mask=attention_mask, num_attn_heads=self.config.num_attention_heads
|
573 |
+
).bool()
|
574 |
+
|
575 |
+
last_hidden_state, attentions = self.encoder(
|
576 |
+
hidden_states=protein_embeddings,
|
577 |
+
attention_mask=attention_mask,
|
578 |
+
return_attn_weights=return_attn_weights,
|
579 |
+
is_causal=is_causal,
|
580 |
+
)
|
581 |
+
pooler_output = (
|
582 |
+
self.pooler(hidden_states=last_hidden_state, padding_mask=attention_mask)
|
583 |
+
if self.pooler is not None
|
584 |
+
else None
|
585 |
+
)
|
586 |
+
|
587 |
+
if not return_dict:
|
588 |
+
return (last_hidden_state, pooler_output, attentions)
|
589 |
+
|
590 |
+
return BacformerModelOutput(
|
591 |
+
last_hidden_state=last_hidden_state,
|
592 |
+
pooler_output=pooler_output,
|
593 |
+
attentions=attentions,
|
594 |
+
)
|
595 |
+
|
596 |
+
|
597 |
+
class BacformerForCausalGM(BacformerPreTrainedModel):
|
598 |
+
"""Bacformer model with genomic modeling head on top"""
|
599 |
+
|
600 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
601 |
+
|
602 |
+
def __init__(self, config: BacformerConfig):
|
603 |
+
super().__init__(config)
|
604 |
+
self.config = config
|
605 |
+
|
606 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
607 |
+
self.gm_head = BacformerGMHead(config)
|
608 |
+
|
609 |
+
# Initialize weights
|
610 |
+
self.init_weights()
|
611 |
+
|
612 |
+
def forward(
|
613 |
+
self,
|
614 |
+
protein_embeddings: torch.Tensor,
|
615 |
+
special_tokens_mask: torch.Tensor,
|
616 |
+
labels: torch.Tensor = None,
|
617 |
+
token_type_ids: torch.Tensor = None,
|
618 |
+
attention_mask: torch.Tensor = None,
|
619 |
+
return_attn_weights: bool = None,
|
620 |
+
return_dict: Union[bool, None] = None,
|
621 |
+
) -> Optional[BacformerModelOutput]:
|
622 |
+
"""Forward method for the model."""
|
623 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
624 |
+
return_attn_weights = (
|
625 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
626 |
+
)
|
627 |
+
|
628 |
+
outputs = self.bacformer(
|
629 |
+
protein_embeddings=protein_embeddings,
|
630 |
+
special_tokens_mask=special_tokens_mask,
|
631 |
+
token_type_ids=token_type_ids,
|
632 |
+
attention_mask=None, # attention mechanism handles the causal mask
|
633 |
+
return_attn_weights=return_attn_weights,
|
634 |
+
return_dict=return_dict,
|
635 |
+
is_causal=True,
|
636 |
+
)
|
637 |
+
last_hidden_state = outputs[0]
|
638 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
639 |
+
|
640 |
+
loss = None
|
641 |
+
if labels is not None:
|
642 |
+
labels = labels.to(prediction_scores.device)
|
643 |
+
|
644 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous().view(-1, prediction_scores.shape[-1])
|
645 |
+
labels = labels[:, 1:].contiguous().view(-1)
|
646 |
+
loss = cross_entropy(shifted_prediction_scores, labels)
|
647 |
+
|
648 |
+
if not return_dict:
|
649 |
+
return (
|
650 |
+
loss,
|
651 |
+
prediction_scores,
|
652 |
+
) + outputs
|
653 |
+
|
654 |
+
return BacformerModelOutput(
|
655 |
+
loss=loss,
|
656 |
+
logits=prediction_scores,
|
657 |
+
last_hidden_state=outputs.last_hidden_state,
|
658 |
+
attentions=outputs.attentions,
|
659 |
+
)
|
660 |
+
|
661 |
+
|
662 |
+
class BacformerForMaskedGM(BacformerPreTrainedModel):
|
663 |
+
"""Bacformer model with genomic modeling head on top"""
|
664 |
+
|
665 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
666 |
+
|
667 |
+
def __init__(self, config: BacformerConfig):
|
668 |
+
super().__init__(config)
|
669 |
+
self.config = config
|
670 |
+
|
671 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
672 |
+
self.gm_head = BacformerGMHead(config)
|
673 |
+
|
674 |
+
# Initialize weights
|
675 |
+
self.init_weights()
|
676 |
+
|
677 |
+
def forward(
|
678 |
+
self,
|
679 |
+
protein_embeddings: torch.Tensor,
|
680 |
+
special_tokens_mask: torch.Tensor,
|
681 |
+
labels: torch.Tensor = None,
|
682 |
+
token_type_ids: torch.Tensor = None,
|
683 |
+
attention_mask: torch.Tensor = None,
|
684 |
+
return_attn_weights: bool = None,
|
685 |
+
return_dict: Union[bool, None] = None,
|
686 |
+
) -> Union[BacformerModelOutput, None]:
|
687 |
+
"""Forward method for the model."""
|
688 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
689 |
+
return_attn_weights = (
|
690 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
691 |
+
)
|
692 |
+
|
693 |
+
outputs = self.bacformer(
|
694 |
+
protein_embeddings=protein_embeddings,
|
695 |
+
special_tokens_mask=special_tokens_mask,
|
696 |
+
token_type_ids=token_type_ids,
|
697 |
+
attention_mask=attention_mask,
|
698 |
+
return_attn_weights=return_attn_weights,
|
699 |
+
return_dict=return_dict,
|
700 |
+
)
|
701 |
+
last_hidden_state = outputs[0]
|
702 |
+
|
703 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
704 |
+
|
705 |
+
loss = None
|
706 |
+
if labels is not None:
|
707 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
708 |
+
last_hidden_state = last_hidden_state[labels != -100]
|
709 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
710 |
+
labels = labels.to(prediction_scores.device)
|
711 |
+
|
712 |
+
### notes
|
713 |
+
# use the labels to get -100 for non-masked tokens
|
714 |
+
# do not use special_tokens_mask
|
715 |
+
# check how the labels are constructed
|
716 |
+
|
717 |
+
# only considering the masked tokens
|
718 |
+
labels = labels[labels != -100]
|
719 |
+
loss = cross_entropy(prediction_scores, labels)
|
720 |
+
else:
|
721 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
722 |
+
|
723 |
+
if not return_dict:
|
724 |
+
return (
|
725 |
+
loss,
|
726 |
+
prediction_scores,
|
727 |
+
) + outputs
|
728 |
+
|
729 |
+
return BacformerModelOutput(
|
730 |
+
loss=loss,
|
731 |
+
logits=prediction_scores,
|
732 |
+
last_hidden_state=outputs.last_hidden_state,
|
733 |
+
attentions=outputs.attentions,
|
734 |
+
)
|
735 |
+
|
736 |
+
|
737 |
+
class BacformerForCausalProteinFamilyModeling(BacformerPreTrainedModel):
|
738 |
+
"""Bacformer model for causal modeling of protein families. Using protein family as tokens rather than protein embeddings"""
|
739 |
+
|
740 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
741 |
+
|
742 |
+
def __init__(
|
743 |
+
self,
|
744 |
+
config: BacformerConfig,
|
745 |
+
n_conditional_properties: int = None,
|
746 |
+
initialise_from_non_pfm_model: bool = False,
|
747 |
+
):
|
748 |
+
super().__init__(config)
|
749 |
+
self.config = config
|
750 |
+
self.cls_token_id = SPECIAL_TOKENS_DICT["CLS"]
|
751 |
+
|
752 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
753 |
+
self.gm_head = BacformerGMHead(config)
|
754 |
+
|
755 |
+
if initialise_from_non_pfm_model:
|
756 |
+
# Initialize weights
|
757 |
+
self.init_weights()
|
758 |
+
# overwrite the embeddings with the pretrained
|
759 |
+
# protein family embeddings from the decoder of the GM Head
|
760 |
+
self.bacformer.embeddings = BacformerProteinFamilyEmbeddings(
|
761 |
+
config,
|
762 |
+
protein_family_embeddings=self.gm_head.decoder.weight,
|
763 |
+
token_type_embeddings=self.bacformer.embeddings.token_type_embeddings.weight,
|
764 |
+
special_tokens_embeddings=self.bacformer.embeddings.special_tokens_embeddings.weight,
|
765 |
+
n_conditional_properties=n_conditional_properties,
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
self.bacformer.embeddings = BacformerProteinFamilyEmbeddings(
|
769 |
+
config,
|
770 |
+
n_conditional_properties=n_conditional_properties,
|
771 |
+
)
|
772 |
+
self.init_weights()
|
773 |
+
|
774 |
+
def forward(
|
775 |
+
self,
|
776 |
+
labels: torch.Tensor = None,
|
777 |
+
special_tokens_mask: torch.Tensor = None,
|
778 |
+
token_type_ids: torch.Tensor = None,
|
779 |
+
property_ids: torch.Tensor = None,
|
780 |
+
return_attn_weights: bool = None,
|
781 |
+
return_dict: Union[bool, None] = None,
|
782 |
+
) -> Optional[BacformerModelOutput]:
|
783 |
+
"""Forward method for the model."""
|
784 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
785 |
+
return_attn_weights = (
|
786 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
787 |
+
)
|
788 |
+
|
789 |
+
outputs = self.bacformer(
|
790 |
+
protein_embeddings=None,
|
791 |
+
labels=labels,
|
792 |
+
special_tokens_mask=special_tokens_mask,
|
793 |
+
token_type_ids=token_type_ids,
|
794 |
+
property_ids=property_ids,
|
795 |
+
return_attn_weights=return_attn_weights,
|
796 |
+
return_dict=return_dict,
|
797 |
+
is_causal=True,
|
798 |
+
)
|
799 |
+
last_hidden_state = outputs[0]
|
800 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
801 |
+
|
802 |
+
loss = None
|
803 |
+
if labels is not None:
|
804 |
+
if property_ids is not None:
|
805 |
+
labels = torch.cat(
|
806 |
+
[
|
807 |
+
torch.tensor([-100], dtype=torch.long)
|
808 |
+
.unsqueeze(0)
|
809 |
+
.to(labels.device), # account for the property token
|
810 |
+
labels,
|
811 |
+
],
|
812 |
+
dim=1,
|
813 |
+
) # ignore index
|
814 |
+
labels = labels.to(prediction_scores.device)
|
815 |
+
|
816 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous().view(-1, prediction_scores.shape[-1])
|
817 |
+
labels = labels[:, 1:].contiguous().view(-1)
|
818 |
+
loss = cross_entropy(shifted_prediction_scores, labels)
|
819 |
+
|
820 |
+
if not return_dict:
|
821 |
+
return (
|
822 |
+
loss,
|
823 |
+
prediction_scores,
|
824 |
+
) + outputs
|
825 |
+
|
826 |
+
return BacformerModelOutput(
|
827 |
+
loss=loss,
|
828 |
+
logits=prediction_scores,
|
829 |
+
last_hidden_state=outputs.last_hidden_state,
|
830 |
+
attentions=outputs.attentions,
|
831 |
+
)
|
832 |
+
|
833 |
+
def generate(
|
834 |
+
self,
|
835 |
+
protein_family_ids: torch.LongTensor,
|
836 |
+
special_tokens_mask: torch.LongTensor = None,
|
837 |
+
token_type_ids: torch.LongTensor = None,
|
838 |
+
max_length: int = 6000,
|
839 |
+
end_token_id: int = 50000,
|
840 |
+
do_sample: bool = False,
|
841 |
+
top_k: int = 50,
|
842 |
+
top_p: float = 1.0,
|
843 |
+
temperature: float = 1.0,
|
844 |
+
property_ids: torch.LongTensor = None,
|
845 |
+
return_last_hidden_states: bool = False,
|
846 |
+
):
|
847 |
+
"""
|
848 |
+
Generate a sequence of tokens autoregressively from a given prompt.
|
849 |
+
|
850 |
+
Args:
|
851 |
+
protein_family_ids (torch.LongTensor): Tensor of shape (batch, seq_len) with token indices.
|
852 |
+
max_length (int): Maximum length of the generated sequence (prompt + newly generated).
|
853 |
+
end_token_id (int, optional): Token ID signifying end-of-sequence (END).
|
854 |
+
If encountered, generation stops.
|
855 |
+
do_sample (bool): Whether to sample from the probability distribution (True)
|
856 |
+
or use greedy decoding (False).
|
857 |
+
top_k (int): If >0, use top-k filtering in sampling mode.
|
858 |
+
top_p (float): If <1.0, use nucleus (top-p) filtering in sampling mode.
|
859 |
+
temperature (float): Softmax temperature for scaling logits.
|
860 |
+
Higher => more random, lower => more deterministic.
|
861 |
+
return_last_hidden_states (bool): If True, return final hidden states as well.
|
862 |
+
|
863 |
+
Returns
|
864 |
+
-------
|
865 |
+
torch.LongTensor: The generated token sequence of shape (batch, final_seq_len).
|
866 |
+
(Optional) torch.FloatTensor: Final hidden states of shape (batch, final_seq_len, hidden_dim)
|
867 |
+
if `return_hidden_states=True`.
|
868 |
+
"""
|
869 |
+
# Default END token
|
870 |
+
if end_token_id is None:
|
871 |
+
end_token_id = getattr(self, "end_token_id", None)
|
872 |
+
|
873 |
+
# Switch to eval mode and move input to correct device
|
874 |
+
self.eval()
|
875 |
+
device = next(self.parameters()).device
|
876 |
+
protein_family_ids = protein_family_ids.to(device)
|
877 |
+
|
878 |
+
# create a special tokens mask if not provided
|
879 |
+
if special_tokens_mask is None:
|
880 |
+
# add a cls token at the beginning
|
881 |
+
protein_family_ids = torch.cat(
|
882 |
+
[torch.tensor([[-100]]).to(device), protein_family_ids],
|
883 |
+
dim=1,
|
884 |
+
)
|
885 |
+
special_tokens_mask = [self.cls_token_id] + [self.config.prot_emb_token_id] * (
|
886 |
+
protein_family_ids.shape[1] - 1
|
887 |
+
)
|
888 |
+
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.long).to(device)
|
889 |
+
|
890 |
+
# create a token type mask if not provided
|
891 |
+
if token_type_ids is None:
|
892 |
+
token_type_ids = torch.zeros_like(protein_family_ids)
|
893 |
+
|
894 |
+
# Prepare the initial sequence and define max new tokens
|
895 |
+
generated = protein_family_ids.clone()
|
896 |
+
batch_size, prompt_length = generated.shape
|
897 |
+
max_new_tokens = max_length - prompt_length
|
898 |
+
if max_new_tokens <= 0:
|
899 |
+
max_new_tokens = 0
|
900 |
+
|
901 |
+
# Disable gradient calculations for generation
|
902 |
+
with torch.no_grad():
|
903 |
+
for _step in range(max_new_tokens):
|
904 |
+
# Forward pass
|
905 |
+
logits = self.forward(
|
906 |
+
labels=generated,
|
907 |
+
special_tokens_mask=special_tokens_mask,
|
908 |
+
# assume it's all on one chromosome
|
909 |
+
token_type_ids=token_type_ids,
|
910 |
+
property_ids=property_ids,
|
911 |
+
return_dict=True,
|
912 |
+
).logits
|
913 |
+
# Focus on the last token's logits
|
914 |
+
next_token_logits = logits[:, -1, :] # (batch_size, vocab_size)
|
915 |
+
|
916 |
+
# Apply temperature
|
917 |
+
if temperature != 1.0:
|
918 |
+
next_token_logits = next_token_logits / temperature
|
919 |
+
|
920 |
+
# Sampling or greedy?
|
921 |
+
if do_sample:
|
922 |
+
# Top-k filter
|
923 |
+
next_token_logits = top_k_filtering(next_token_logits, top_k=top_k)
|
924 |
+
# Top-p filter
|
925 |
+
next_token_logits = top_p_filtering(next_token_logits, top_p=top_p)
|
926 |
+
|
927 |
+
probs = softmax(next_token_logits, dim=-1)
|
928 |
+
next_token_id = torch.multinomial(probs, num_samples=1)
|
929 |
+
else:
|
930 |
+
# Greedy decoding
|
931 |
+
next_token_id = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
932 |
+
|
933 |
+
# Append predicted token
|
934 |
+
generated = torch.cat([generated, next_token_id], dim=1)
|
935 |
+
special_tokens_mask = torch.cat(
|
936 |
+
[special_tokens_mask, torch.tensor([[self.config.prot_emb_token_id]]).to(generated.device)], dim=1
|
937 |
+
)
|
938 |
+
last_token_type_id = token_type_ids[:, -1].unsqueeze(1)
|
939 |
+
token_type_ids = torch.cat([token_type_ids, last_token_type_id], dim=1)
|
940 |
+
|
941 |
+
# Check for END in all sequences
|
942 |
+
if end_token_id is not None:
|
943 |
+
if (next_token_id.squeeze(1) == end_token_id).all():
|
944 |
+
# If every sequence ended, break early
|
945 |
+
break
|
946 |
+
|
947 |
+
if not return_last_hidden_states:
|
948 |
+
return generated
|
949 |
+
|
950 |
+
# Optionally compute final hidden states
|
951 |
+
if return_last_hidden_states:
|
952 |
+
last_hidden_state = self.forward(
|
953 |
+
labels=generated,
|
954 |
+
special_tokens_mask=special_tokens_mask,
|
955 |
+
token_type_ids=token_type_ids,
|
956 |
+
return_dict=True,
|
957 |
+
).last_hidden_state
|
958 |
+
|
959 |
+
return generated, last_hidden_state
|
960 |
+
|
961 |
+
|
962 |
+
class BacformerForMaskedGMWithContrastiveLoss(BacformerPreTrainedModel):
|
963 |
+
"""Bacformer model with genomic modeling head on top"""
|
964 |
+
|
965 |
+
_tied_weights_keys = ["gm_head.decoder.weight"]
|
966 |
+
|
967 |
+
def __init__(self, config: BacformerConfig):
|
968 |
+
super().__init__(config)
|
969 |
+
self.config = config
|
970 |
+
|
971 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
972 |
+
self.gm_head = BacformerGMHead(config)
|
973 |
+
|
974 |
+
# Initialize weights
|
975 |
+
self.init_weights()
|
976 |
+
|
977 |
+
def forward(
|
978 |
+
self,
|
979 |
+
protein_embeddings: torch.Tensor,
|
980 |
+
special_tokens_mask: torch.Tensor,
|
981 |
+
labels: torch.Tensor = None,
|
982 |
+
token_type_ids: torch.Tensor = None,
|
983 |
+
attention_mask: torch.Tensor = None,
|
984 |
+
return_attn_weights: bool = None,
|
985 |
+
return_dict: Union[bool, None] = None,
|
986 |
+
) -> Union[BacformerModelOutput, None]:
|
987 |
+
"""Forward method for the model."""
|
988 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
989 |
+
return_attn_weights = (
|
990 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
991 |
+
)
|
992 |
+
|
993 |
+
outputs = self.bacformer(
|
994 |
+
protein_embeddings=protein_embeddings,
|
995 |
+
special_tokens_mask=special_tokens_mask,
|
996 |
+
token_type_ids=token_type_ids,
|
997 |
+
attention_mask=attention_mask,
|
998 |
+
return_attn_weights=return_attn_weights,
|
999 |
+
return_dict=return_dict,
|
1000 |
+
)
|
1001 |
+
last_hidden_state = outputs[0]
|
1002 |
+
|
1003 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
1004 |
+
|
1005 |
+
loss = None
|
1006 |
+
if labels is not None:
|
1007 |
+
# contrastive loss
|
1008 |
+
contrastive_loss = compute_contrastive_loss(protein_embeddings, last_hidden_state, special_tokens_mask)
|
1009 |
+
# to speed up the forward pass, let's only consider the masked tokens
|
1010 |
+
last_hidden_state = last_hidden_state[labels != -100]
|
1011 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
1012 |
+
labels = labels.to(prediction_scores.device)
|
1013 |
+
|
1014 |
+
# only considering the masked tokens
|
1015 |
+
labels = labels[labels != -100]
|
1016 |
+
masked_loss = cross_entropy(prediction_scores, labels)
|
1017 |
+
loss = masked_loss + self.config.alpha_contrastive_loss * contrastive_loss
|
1018 |
+
else:
|
1019 |
+
prediction_scores = self.gm_head(last_hidden_state)
|
1020 |
+
|
1021 |
+
if not return_dict:
|
1022 |
+
return (
|
1023 |
+
loss,
|
1024 |
+
prediction_scores,
|
1025 |
+
) + outputs
|
1026 |
+
|
1027 |
+
return BacformerModelOutput(
|
1028 |
+
loss=loss,
|
1029 |
+
logits=prediction_scores,
|
1030 |
+
last_hidden_state=outputs.last_hidden_state,
|
1031 |
+
attentions=outputs.attentions,
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
|
1035 |
+
class BacformerForProteinClassification(BacformerPreTrainedModel):
|
1036 |
+
"""Bacformer model with a classification head on top for protein classification tasks."""
|
1037 |
+
|
1038 |
+
def __init__(self, config: BacformerConfig, benchmark_esm: bool = False):
|
1039 |
+
super().__init__(config)
|
1040 |
+
self.config = config
|
1041 |
+
self.benchmark_esm = benchmark_esm
|
1042 |
+
|
1043 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
1044 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1045 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1046 |
+
|
1047 |
+
# Initialize weights and apply final processing
|
1048 |
+
self.post_init()
|
1049 |
+
|
1050 |
+
def forward(
|
1051 |
+
self,
|
1052 |
+
protein_embeddings: torch.Tensor,
|
1053 |
+
special_tokens_mask: torch.Tensor,
|
1054 |
+
labels: torch.Tensor = None,
|
1055 |
+
token_type_ids: torch.Tensor = None,
|
1056 |
+
attention_mask: torch.Tensor = None,
|
1057 |
+
return_attn_weights: bool = None,
|
1058 |
+
return_dict: Union[bool, None] = None,
|
1059 |
+
) -> Optional[BacformerModelOutput]:
|
1060 |
+
"""Forward method for the model."""
|
1061 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1062 |
+
return_attn_weights = (
|
1063 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
if self.benchmark_esm:
|
1067 |
+
outputs = [protein_embeddings]
|
1068 |
+
else:
|
1069 |
+
outputs = self.bacformer(
|
1070 |
+
protein_embeddings=protein_embeddings,
|
1071 |
+
special_tokens_mask=special_tokens_mask,
|
1072 |
+
token_type_ids=token_type_ids,
|
1073 |
+
attention_mask=attention_mask,
|
1074 |
+
return_attn_weights=return_attn_weights,
|
1075 |
+
return_dict=return_dict,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
last_hidden_state = outputs[0]
|
1079 |
+
|
1080 |
+
last_hidden_state = self.dropout(last_hidden_state)
|
1081 |
+
logits = self.classifier(last_hidden_state)
|
1082 |
+
|
1083 |
+
loss = None
|
1084 |
+
if labels is not None:
|
1085 |
+
labels = labels.to(logits.device)
|
1086 |
+
|
1087 |
+
if self.config.problem_type == "regression":
|
1088 |
+
loss = mse_loss(logits, labels)
|
1089 |
+
elif self.config.problem_type == "single_label_classification":
|
1090 |
+
loss = cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1091 |
+
elif (
|
1092 |
+
self.config.problem_type == "multi_label_classification"
|
1093 |
+
or self.config.problem_type == "binary_classification"
|
1094 |
+
):
|
1095 |
+
# remove the -100 labels from loss computation
|
1096 |
+
mask = torch.ones_like(labels.view(-1)) - (labels.view(-1) == -100.0).float()
|
1097 |
+
loss = binary_cross_entropy_with_logits(
|
1098 |
+
logits.view(-1), labels.view(-1).type_as(logits), reduction="none"
|
1099 |
+
)
|
1100 |
+
loss = (loss * mask).sum() / mask.sum()
|
1101 |
+
|
1102 |
+
if not return_dict:
|
1103 |
+
return (
|
1104 |
+
loss,
|
1105 |
+
None,
|
1106 |
+
logits,
|
1107 |
+
) # + outputs
|
1108 |
+
|
1109 |
+
return BacformerModelOutput(
|
1110 |
+
loss=loss,
|
1111 |
+
logits=logits,
|
1112 |
+
last_hidden_state=last_hidden_state,
|
1113 |
+
attentions=outputs.attentions,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
|
1117 |
+
class BacformerForGenomeClassification(BacformerPreTrainedModel):
|
1118 |
+
"""Bacformer model with a classification head on top for genome classification tasks."""
|
1119 |
+
|
1120 |
+
def __init__(self, config: BacformerConfig):
|
1121 |
+
super().__init__(config)
|
1122 |
+
self.config = config
|
1123 |
+
|
1124 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
1125 |
+
self.classifier = BacformerGenomeClassificationHead(config)
|
1126 |
+
|
1127 |
+
# Initialize weights and apply final processing
|
1128 |
+
self.post_init()
|
1129 |
+
|
1130 |
+
def forward(
|
1131 |
+
self,
|
1132 |
+
protein_embeddings: torch.Tensor,
|
1133 |
+
special_tokens_mask: torch.Tensor,
|
1134 |
+
labels: torch.Tensor = None,
|
1135 |
+
token_type_ids: torch.Tensor = None,
|
1136 |
+
attention_mask: torch.Tensor = None,
|
1137 |
+
return_attn_weights: bool = None,
|
1138 |
+
return_dict: Union[bool, None] = None,
|
1139 |
+
) -> Optional[BacformerModelOutput]:
|
1140 |
+
"""Forward method for the model."""
|
1141 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1142 |
+
return_attn_weights = (
|
1143 |
+
return_attn_weights if return_attn_weights is not None else self.config.return_attn_weights
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
outputs = self.bacformer(
|
1147 |
+
protein_embeddings=protein_embeddings,
|
1148 |
+
special_tokens_mask=special_tokens_mask,
|
1149 |
+
token_type_ids=token_type_ids,
|
1150 |
+
attention_mask=attention_mask,
|
1151 |
+
return_attn_weights=return_attn_weights,
|
1152 |
+
return_dict=return_dict,
|
1153 |
+
)
|
1154 |
+
last_hidden_state = outputs[0]
|
1155 |
+
logits = self.classifier(last_hidden_state, attention_mask)
|
1156 |
+
|
1157 |
+
loss = None
|
1158 |
+
if labels is not None:
|
1159 |
+
labels = labels.to(logits.device)
|
1160 |
+
|
1161 |
+
if self.config.problem_type == "regression":
|
1162 |
+
loss = mse_loss(logits.view(-1), labels.view(-1))
|
1163 |
+
elif self.config.problem_type == "binary_classification":
|
1164 |
+
loss = binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
|
1165 |
+
elif self.config.problem_type == "single_label_classification":
|
1166 |
+
loss = cross_entropy(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1167 |
+
elif self.config.problem_type == "multi_label_classification":
|
1168 |
+
loss = binary_cross_entropy_with_logits(logits, labels)
|
1169 |
+
|
1170 |
+
if not return_dict:
|
1171 |
+
return (
|
1172 |
+
loss,
|
1173 |
+
None,
|
1174 |
+
logits,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
return BacformerModelOutput(
|
1178 |
+
loss=loss,
|
1179 |
+
logits=logits,
|
1180 |
+
last_hidden_state=outputs.last_hidden_state,
|
1181 |
+
attentions=outputs.attentions,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
|
1185 |
+
class BacformerForProteinProteinInteraction(BacformerPreTrainedModel):
|
1186 |
+
"""Bacformer model with a protein-protein interaction head on top."""
|
1187 |
+
|
1188 |
+
def __init__(self, config: BacformerConfig, benchmark_esm: bool = False):
|
1189 |
+
super().__init__(config)
|
1190 |
+
self.config = config
|
1191 |
+
self.benchmark_esm = benchmark_esm
|
1192 |
+
print("Benchmark ESM:", self.benchmark_esm)
|
1193 |
+
self.return_attn_weights = config.return_attn_weights
|
1194 |
+
|
1195 |
+
self.bacformer = BacformerModel(config, add_pooling_layer=False)
|
1196 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1197 |
+
self.dense = nn.Sequential(
|
1198 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
1199 |
+
nn.GELU(),
|
1200 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps),
|
1201 |
+
nn.Dropout(0.2),
|
1202 |
+
)
|
1203 |
+
self.ppi_head = BacformerProteinProteinInteractionHead(
|
1204 |
+
in_features=config.hidden_size, prot_emb_idx=config.prot_emb_token_id
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
# Initialize weights and apply final processing
|
1208 |
+
self.post_init()
|
1209 |
+
|
1210 |
+
def forward(
|
1211 |
+
self,
|
1212 |
+
protein_embeddings: torch.Tensor,
|
1213 |
+
special_tokens_mask: torch.Tensor,
|
1214 |
+
labels: torch.Tensor = None,
|
1215 |
+
token_type_ids: torch.Tensor = None,
|
1216 |
+
attention_mask: torch.Tensor = None,
|
1217 |
+
return_attn_weights: bool = None,
|
1218 |
+
return_dict: Union[bool, None] = None,
|
1219 |
+
) -> Union[OrderedDict, None]: # TODO: change it from token classifier output
|
1220 |
+
"""Forward method for the model."""
|
1221 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1222 |
+
|
1223 |
+
if self.benchmark_esm:
|
1224 |
+
last_hidden_state = protein_embeddings.squeeze(0)[1:-2, :]
|
1225 |
+
else:
|
1226 |
+
outputs = self.bacformer(
|
1227 |
+
protein_embeddings=protein_embeddings,
|
1228 |
+
special_tokens_mask=special_tokens_mask,
|
1229 |
+
token_type_ids=token_type_ids,
|
1230 |
+
attention_mask=attention_mask,
|
1231 |
+
return_attn_weights=False,
|
1232 |
+
return_dict=True,
|
1233 |
+
)
|
1234 |
+
last_hidden_state = outputs.last_hidden_state.squeeze(0)[1:-2, :]
|
1235 |
+
|
1236 |
+
assert labels.shape[0] == 1, "Batch size should be 1 for protein-protein interaction task"
|
1237 |
+
|
1238 |
+
last_hidden_state = self.dense(self.dropout(last_hidden_state))
|
1239 |
+
last_hidden_state = torch.cat([last_hidden_state[labels[:, 0]], last_hidden_state[labels[:, 1]]], dim=0).mean(
|
1240 |
+
dim=0
|
1241 |
+
)
|
1242 |
+
logits = self.ppi_head(last_hidden_state)
|
1243 |
+
|
1244 |
+
loss = binary_cross_entropy_with_logits(logits, labels[:, 2].type_as(logits).squeeze(0))
|
1245 |
+
|
1246 |
+
if not return_dict:
|
1247 |
+
return (
|
1248 |
+
loss,
|
1249 |
+
logits,
|
1250 |
+
)
|
1251 |
+
|
1252 |
+
return BacformerModelOutput(
|
1253 |
+
loss=loss,
|
1254 |
+
logits=logits,
|
1255 |
+
last_hidden_state=outputs.last_hidden_state,
|
1256 |
+
attentions=outputs.attentions,
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
|
1260 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
1261 |
+
class BacformerPooler(nn.Module):
|
1262 |
+
"""Pooler for Bacformer model."""
|
1263 |
+
|
1264 |
+
def __init__(self, config: BacformerConfig):
|
1265 |
+
super().__init__()
|
1266 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1267 |
+
self.activation = nn.Tanh()
|
1268 |
+
|
1269 |
+
def forward(self, hidden_states: torch.Tensor, padding_mask: torch.Tensor = None) -> torch.Tensor:
|
1270 |
+
"""Forward method for the pooler."""
|
1271 |
+
# We "pool" the model by taking the mean of non-padding tokens
|
1272 |
+
padding_mask = padding_mask.to(hidden_states.device) if padding_mask is not None else None
|
1273 |
+
if padding_mask is not None:
|
1274 |
+
mean_hidden_states = torch.einsum("ijk,ij->ik", hidden_states, padding_mask) / padding_mask.sum(
|
1275 |
+
1
|
1276 |
+
).unsqueeze(1)
|
1277 |
+
else:
|
1278 |
+
mean_hidden_states = hidden_states.mean(dim=1)
|
1279 |
+
pooled_output = self.dense(mean_hidden_states)
|
1280 |
+
pooled_output = self.activation(pooled_output)
|
1281 |
+
return pooled_output
|
1282 |
+
|
1283 |
+
|
1284 |
+
class BacformerGMHead(nn.Module):
|
1285 |
+
"""Bacformer Head for genomic modeling."""
|
1286 |
+
|
1287 |
+
def __init__(self, config):
|
1288 |
+
super().__init__()
|
1289 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1290 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1291 |
+
|
1292 |
+
# add 1 to the condfig.protein_clusters_vocab_size to account for the end token
|
1293 |
+
self.decoder = nn.Linear(config.hidden_size, config.protein_clusters_vocab_size + 1, bias=False)
|
1294 |
+
self.bias = nn.Parameter(torch.zeros(config.protein_clusters_vocab_size + 1))
|
1295 |
+
|
1296 |
+
def forward(self, features, **kwargs):
|
1297 |
+
"""Forward method for the head."""
|
1298 |
+
x = self.dense(features)
|
1299 |
+
x = gelu(x)
|
1300 |
+
x = self.layer_norm(x)
|
1301 |
+
|
1302 |
+
# project back to nr of labels with bias
|
1303 |
+
x = self.decoder(x) + self.bias
|
1304 |
+
return x
|
1305 |
+
|
1306 |
+
|
1307 |
+
class BacformerGenomeClassificationHead(nn.Module):
|
1308 |
+
"""Head for genome-level classification tasks."""
|
1309 |
+
|
1310 |
+
def __init__(self, config: BacformerConfig):
|
1311 |
+
super().__init__()
|
1312 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1313 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1314 |
+
|
1315 |
+
def forward(self, features: torch.Tensor, padding_mask: torch.Tensor, **kwargs):
|
1316 |
+
"""Forward method for the head."""
|
1317 |
+
if padding_mask is not None:
|
1318 |
+
x = torch.einsum("ijk,ij->ik", features, padding_mask) / padding_mask.sum(1).unsqueeze(1)
|
1319 |
+
else:
|
1320 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1321 |
+
x = self.dropout(x)
|
1322 |
+
x = self.out_proj(x)
|
1323 |
+
return x
|
1324 |
+
|
1325 |
+
|
1326 |
+
class BacformerProteinProteinInteractionHead(nn.Module):
|
1327 |
+
"""Head for protein-protein interaction task at a genome level."""
|
1328 |
+
|
1329 |
+
def __init__(self, in_features: int, prot_emb_idx: int = 4, bias: bool = True):
|
1330 |
+
super().__init__()
|
1331 |
+
self.in_features = in_features
|
1332 |
+
self.prot_emb_idx = prot_emb_idx
|
1333 |
+
self.dropout = nn.Dropout(0.2)
|
1334 |
+
self.linear = nn.Linear(in_features, 1, bias=bias)
|
1335 |
+
|
1336 |
+
def forward(
|
1337 |
+
self, hidden_states: torch.Tensor
|
1338 |
+
) -> torch.Tensor: # special_tokens_mask: torch.Tensor, attentions: torch.Tensor):
|
1339 |
+
"""Forward method for the head."""
|
1340 |
+
return self.linear(self.dropout(hidden_states)).squeeze(-1)
|
utils_bacformer.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn.functional import cross_entropy, softmax
|
3 |
+
|
4 |
+
from .configuration_bacformer import SPECIAL_TOKENS_DICT
|
5 |
+
|
6 |
+
|
7 |
+
def compute_contrastive_loss(
|
8 |
+
protein_embeddings: torch.Tensor,
|
9 |
+
last_hidden_state: torch.Tensor,
|
10 |
+
special_tokens_mask: torch.Tensor,
|
11 |
+
) -> torch.Tensor:
|
12 |
+
"""Compute contrastive loss between protein embeddings and masked items."""
|
13 |
+
# keep protein embeddings and masked items
|
14 |
+
# ensure the batch size is 1, the model currently does not work with batch size > 1
|
15 |
+
assert protein_embeddings.shape[0] == last_hidden_state.shape[0] == 1
|
16 |
+
|
17 |
+
# subset to mask and protein embedding tokens
|
18 |
+
special_tokens_mask = special_tokens_mask.squeeze(0)
|
19 |
+
mask = (special_tokens_mask == SPECIAL_TOKENS_DICT["PROT_EMB"]) | (
|
20 |
+
special_tokens_mask == SPECIAL_TOKENS_DICT["MASK"]
|
21 |
+
)
|
22 |
+
protein_embeddings = protein_embeddings.squeeze(0)[mask]
|
23 |
+
last_hidden_state = last_hidden_state.squeeze(0)[mask]
|
24 |
+
|
25 |
+
# Normalize embeddings
|
26 |
+
last_hidden_state = last_hidden_state / last_hidden_state.norm(dim=1, keepdim=True)
|
27 |
+
protein_embeddings = protein_embeddings / protein_embeddings.norm(dim=1, keepdim=True)
|
28 |
+
|
29 |
+
# Compute similarity matrix and loss as before
|
30 |
+
similarity_matrix = torch.matmul(last_hidden_state, protein_embeddings.T)
|
31 |
+
|
32 |
+
n_prots = protein_embeddings.shape[0]
|
33 |
+
labels = torch.arange(n_prots).to(protein_embeddings.device)
|
34 |
+
|
35 |
+
# Compute the loss
|
36 |
+
loss = cross_entropy(similarity_matrix, labels)
|
37 |
+
return loss
|
38 |
+
|
39 |
+
|
40 |
+
def top_k_filtering(logits: torch.Tensor, top_k: int = 50):
|
41 |
+
"""
|
42 |
+
Keep only top_k logits and set the rest to -inf.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
46 |
+
top_k (int): The number of highest probability logits to keep.
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
torch.Tensor: Filtered logits where only the top k values remain, and all others are -inf.
|
51 |
+
"""
|
52 |
+
if top_k <= 0:
|
53 |
+
return logits
|
54 |
+
|
55 |
+
# Find top_k values
|
56 |
+
top_k = min(top_k, logits.size(-1))
|
57 |
+
vals, idx = torch.topk(logits, top_k, dim=-1)
|
58 |
+
# Get the smallest logit in the top_k
|
59 |
+
min_vals = vals[:, -1].unsqueeze(-1)
|
60 |
+
# Mask all logits that are < this min value
|
61 |
+
mask = logits < min_vals
|
62 |
+
logits[mask] = float("-inf")
|
63 |
+
return logits
|
64 |
+
|
65 |
+
|
66 |
+
def top_p_filtering(logits: torch.Tensor, top_p: float = 0.9):
|
67 |
+
"""
|
68 |
+
Keep the smallest set of logits whose cumulative probability >= top_p.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
72 |
+
top_p (float): Cumulative probability threshold.
|
73 |
+
|
74 |
+
Returns
|
75 |
+
-------
|
76 |
+
torch.Tensor: Filtered logits where only tokens within the top_p cumulative
|
77 |
+
probability mass are kept; the rest are set to -inf.
|
78 |
+
"""
|
79 |
+
if top_p >= 1.0:
|
80 |
+
return logits
|
81 |
+
|
82 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
83 |
+
cumulative_probs = torch.cumsum(softmax(sorted_logits, dim=-1), dim=-1)
|
84 |
+
|
85 |
+
# Identify where cumulative probability exceeds top_p
|
86 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
87 |
+
# Shift the mask to ensure we always keep at least one token
|
88 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
89 |
+
sorted_indices_to_remove[..., 0] = False
|
90 |
+
|
91 |
+
# Scatter to replicate the mask in the original ordering
|
92 |
+
for i in range(logits.size(0)):
|
93 |
+
remove_indices = sorted_indices[i, sorted_indices_to_remove[i]]
|
94 |
+
logits[i, remove_indices] = float("-inf")
|
95 |
+
|
96 |
+
return logits
|
97 |
+
|
98 |
+
|
99 |
+
def create_4d_from_2d_attn_mask(attn_mask: torch.Tensor, num_attn_heads: int):
|
100 |
+
"""Helper function to reshape attn_mask to 3D from 2D"""
|
101 |
+
assert (
|
102 |
+
len(attn_mask.shape) == 2
|
103 |
+
), f"Please provide attn_mask of shape (batch_size, seq_len), current shape {attn_mask.shape}"
|
104 |
+
|
105 |
+
bs, seq_len = attn_mask.shape
|
106 |
+
attn_mask = attn_mask.view(bs, 1, 1, seq_len)
|
107 |
+
attn_mask = attn_mask.expand(-1, num_attn_heads, -1, -1)
|
108 |
+
attn_mask = attn_mask.view(bs, num_attn_heads, -1, seq_len)
|
109 |
+
return attn_mask
|