Upload BacformerForCausalGM
Browse files- modeling_bacformer.py +5 -126
- utils_bacformer.py +109 -0
modeling_bacformer.py
CHANGED
@@ -16,112 +16,8 @@ from torch.nn.functional import (
|
|
16 |
from transformers import PreTrainedModel
|
17 |
from transformers.utils import ModelOutput
|
18 |
|
19 |
-
from
|
20 |
-
|
21 |
-
|
22 |
-
def compute_contrastive_loss(
|
23 |
-
protein_embeddings: torch.Tensor,
|
24 |
-
last_hidden_state: torch.Tensor,
|
25 |
-
special_tokens_mask: torch.Tensor,
|
26 |
-
) -> torch.Tensor:
|
27 |
-
"""Compute contrastive loss between protein embeddings and masked items."""
|
28 |
-
# keep protein embeddings and masked items
|
29 |
-
# ensure the batch size is 1, the model currently does not work with batch size > 1
|
30 |
-
assert protein_embeddings.shape[0] == last_hidden_state.shape[0] == 1
|
31 |
-
|
32 |
-
# subset to mask and protein embedding tokens
|
33 |
-
special_tokens_mask = special_tokens_mask.squeeze(0)
|
34 |
-
mask = (special_tokens_mask == SPECIAL_TOKENS_DICT["PROT_EMB"]) | (
|
35 |
-
special_tokens_mask == SPECIAL_TOKENS_DICT["MASK"]
|
36 |
-
)
|
37 |
-
protein_embeddings = protein_embeddings.squeeze(0)[mask]
|
38 |
-
last_hidden_state = last_hidden_state.squeeze(0)[mask]
|
39 |
-
|
40 |
-
# Normalize embeddings
|
41 |
-
last_hidden_state = last_hidden_state / last_hidden_state.norm(dim=1, keepdim=True)
|
42 |
-
protein_embeddings = protein_embeddings / protein_embeddings.norm(dim=1, keepdim=True)
|
43 |
-
|
44 |
-
# Compute similarity matrix and loss as before
|
45 |
-
similarity_matrix = torch.matmul(last_hidden_state, protein_embeddings.T)
|
46 |
-
|
47 |
-
n_prots = protein_embeddings.shape[0]
|
48 |
-
labels = torch.arange(n_prots).to(protein_embeddings.device)
|
49 |
-
|
50 |
-
# Compute the loss
|
51 |
-
loss = cross_entropy(similarity_matrix, labels)
|
52 |
-
return loss
|
53 |
-
|
54 |
-
|
55 |
-
def top_k_filtering(logits: torch.Tensor, top_k: int = 50):
|
56 |
-
"""
|
57 |
-
Keep only top_k logits and set the rest to -inf.
|
58 |
-
|
59 |
-
Args:
|
60 |
-
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
61 |
-
top_k (int): The number of highest probability logits to keep.
|
62 |
-
|
63 |
-
Returns
|
64 |
-
-------
|
65 |
-
torch.Tensor: Filtered logits where only the top k values remain, and all others are -inf.
|
66 |
-
"""
|
67 |
-
if top_k <= 0:
|
68 |
-
return logits
|
69 |
-
|
70 |
-
# Find top_k values
|
71 |
-
top_k = min(top_k, logits.size(-1))
|
72 |
-
vals, idx = torch.topk(logits, top_k, dim=-1)
|
73 |
-
# Get the smallest logit in the top_k
|
74 |
-
min_vals = vals[:, -1].unsqueeze(-1)
|
75 |
-
# Mask all logits that are < this min value
|
76 |
-
mask = logits < min_vals
|
77 |
-
logits[mask] = float("-inf")
|
78 |
-
return logits
|
79 |
-
|
80 |
-
|
81 |
-
def top_p_filtering(logits: torch.Tensor, top_p: float = 0.9):
|
82 |
-
"""
|
83 |
-
Keep the smallest set of logits whose cumulative probability >= top_p.
|
84 |
-
|
85 |
-
Args:
|
86 |
-
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
87 |
-
top_p (float): Cumulative probability threshold.
|
88 |
-
|
89 |
-
Returns
|
90 |
-
-------
|
91 |
-
torch.Tensor: Filtered logits where only tokens within the top_p cumulative
|
92 |
-
probability mass are kept; the rest are set to -inf.
|
93 |
-
"""
|
94 |
-
if top_p >= 1.0:
|
95 |
-
return logits
|
96 |
-
|
97 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
98 |
-
cumulative_probs = torch.cumsum(softmax(sorted_logits, dim=-1), dim=-1)
|
99 |
-
|
100 |
-
# Identify where cumulative probability exceeds top_p
|
101 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
102 |
-
# Shift the mask to ensure we always keep at least one token
|
103 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
104 |
-
sorted_indices_to_remove[..., 0] = False
|
105 |
-
|
106 |
-
# Scatter to replicate the mask in the original ordering
|
107 |
-
for i in range(logits.size(0)):
|
108 |
-
remove_indices = sorted_indices[i, sorted_indices_to_remove[i]]
|
109 |
-
logits[i, remove_indices] = float("-inf")
|
110 |
-
|
111 |
-
return logits
|
112 |
-
|
113 |
-
|
114 |
-
def create_4d_from_2d_attn_mask(attn_mask: torch.Tensor, num_attn_heads: int):
|
115 |
-
"""Helper function to reshape attn_mask to 3D from 2D"""
|
116 |
-
assert (
|
117 |
-
len(attn_mask.shape) == 2
|
118 |
-
), f"Please provide attn_mask of shape (batch_size, seq_len), current shape {attn_mask.shape}"
|
119 |
-
|
120 |
-
bs, seq_len = attn_mask.shape
|
121 |
-
attn_mask = attn_mask.view(bs, 1, 1, seq_len)
|
122 |
-
attn_mask = attn_mask.expand(-1, num_attn_heads, -1, -1)
|
123 |
-
attn_mask = attn_mask.view(bs, num_attn_heads, -1, seq_len)
|
124 |
-
return attn_mask
|
125 |
|
126 |
|
127 |
@dataclass
|
@@ -186,23 +82,6 @@ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
|
|
186 |
return freqs_cos, freqs_sin
|
187 |
|
188 |
|
189 |
-
def symmetrize(x):
|
190 |
-
"""Make layer symmetric in final two dimensions, used for protein-protein interaction prediction."""
|
191 |
-
return x + x.transpose(-1, -2)
|
192 |
-
|
193 |
-
|
194 |
-
def average_product_correct(x):
|
195 |
-
"""Perform average product correct, used for protein-protein interaction prediction."""
|
196 |
-
a1 = x.sum(-1, keepdims=True)
|
197 |
-
a2 = x.sum(-2, keepdims=True)
|
198 |
-
a12 = x.sum((-1, -2), keepdims=True)
|
199 |
-
|
200 |
-
avg = a1 * a2
|
201 |
-
# avg.div_(a12) # in-place to reduce memory
|
202 |
-
normalized = x - avg.div_(a12)
|
203 |
-
return normalized
|
204 |
-
|
205 |
-
|
206 |
def scaled_dot_product_attention_w_attn_weights(
|
207 |
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
|
208 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
@@ -416,7 +295,7 @@ class BacformerTransformerEncoder(nn.Module):
|
|
416 |
class BacformerEmbeddings(nn.Module):
|
417 |
"""Construct the protein embeddings from protein sequence, position embeddings and sequence type embeddings."""
|
418 |
|
419 |
-
def __init__(self, config
|
420 |
super().__init__()
|
421 |
self.config = config
|
422 |
self.linear = nn.Linear(config.hidden_size, config.hidden_size)
|
@@ -469,7 +348,7 @@ class BacformerProteinFamilyEmbeddings(nn.Module):
|
|
469 |
|
470 |
def __init__(
|
471 |
self,
|
472 |
-
config
|
473 |
protein_family_embeddings: torch.Tensor = None,
|
474 |
token_type_embeddings: torch.Tensor = None,
|
475 |
special_tokens_embeddings: torch.Tensor = None,
|
@@ -573,7 +452,7 @@ class BacformerProteinFamilyEmbeddings(nn.Module):
|
|
573 |
class BacformerEncoder(nn.Module):
|
574 |
"""Bacformer encoder model"""
|
575 |
|
576 |
-
def __init__(self, config
|
577 |
super().__init__()
|
578 |
self.config = config
|
579 |
|
|
|
16 |
from transformers import PreTrainedModel
|
17 |
from transformers.utils import ModelOutput
|
18 |
|
19 |
+
from .configuration_bacformer import SPECIAL_TOKENS_DICT, BacformerConfig
|
20 |
+
from .utils_bacformer import compute_contrastive_loss, create_4d_from_2d_attn_mask, top_k_filtering, top_p_filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
@dataclass
|
|
|
82 |
return freqs_cos, freqs_sin
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def scaled_dot_product_attention_w_attn_weights(
|
86 |
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
|
87 |
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
295 |
class BacformerEmbeddings(nn.Module):
|
296 |
"""Construct the protein embeddings from protein sequence, position embeddings and sequence type embeddings."""
|
297 |
|
298 |
+
def __init__(self, config):
|
299 |
super().__init__()
|
300 |
self.config = config
|
301 |
self.linear = nn.Linear(config.hidden_size, config.hidden_size)
|
|
|
348 |
|
349 |
def __init__(
|
350 |
self,
|
351 |
+
config,
|
352 |
protein_family_embeddings: torch.Tensor = None,
|
353 |
token_type_embeddings: torch.Tensor = None,
|
354 |
special_tokens_embeddings: torch.Tensor = None,
|
|
|
452 |
class BacformerEncoder(nn.Module):
|
453 |
"""Bacformer encoder model"""
|
454 |
|
455 |
+
def __init__(self, config):
|
456 |
super().__init__()
|
457 |
self.config = config
|
458 |
|
utils_bacformer.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn.functional import cross_entropy, softmax
|
3 |
+
|
4 |
+
from .configuration_bacformer import SPECIAL_TOKENS_DICT
|
5 |
+
|
6 |
+
|
7 |
+
def compute_contrastive_loss(
|
8 |
+
protein_embeddings: torch.Tensor,
|
9 |
+
last_hidden_state: torch.Tensor,
|
10 |
+
special_tokens_mask: torch.Tensor,
|
11 |
+
) -> torch.Tensor:
|
12 |
+
"""Compute contrastive loss between protein embeddings and masked items."""
|
13 |
+
# keep protein embeddings and masked items
|
14 |
+
# ensure the batch size is 1, the model currently does not work with batch size > 1
|
15 |
+
assert protein_embeddings.shape[0] == last_hidden_state.shape[0] == 1
|
16 |
+
|
17 |
+
# subset to mask and protein embedding tokens
|
18 |
+
special_tokens_mask = special_tokens_mask.squeeze(0)
|
19 |
+
mask = (special_tokens_mask == SPECIAL_TOKENS_DICT["PROT_EMB"]) | (
|
20 |
+
special_tokens_mask == SPECIAL_TOKENS_DICT["MASK"]
|
21 |
+
)
|
22 |
+
protein_embeddings = protein_embeddings.squeeze(0)[mask]
|
23 |
+
last_hidden_state = last_hidden_state.squeeze(0)[mask]
|
24 |
+
|
25 |
+
# Normalize embeddings
|
26 |
+
last_hidden_state = last_hidden_state / last_hidden_state.norm(dim=1, keepdim=True)
|
27 |
+
protein_embeddings = protein_embeddings / protein_embeddings.norm(dim=1, keepdim=True)
|
28 |
+
|
29 |
+
# Compute similarity matrix and loss as before
|
30 |
+
similarity_matrix = torch.matmul(last_hidden_state, protein_embeddings.T)
|
31 |
+
|
32 |
+
n_prots = protein_embeddings.shape[0]
|
33 |
+
labels = torch.arange(n_prots).to(protein_embeddings.device)
|
34 |
+
|
35 |
+
# Compute the loss
|
36 |
+
loss = cross_entropy(similarity_matrix, labels)
|
37 |
+
return loss
|
38 |
+
|
39 |
+
|
40 |
+
def top_k_filtering(logits: torch.Tensor, top_k: int = 50):
|
41 |
+
"""
|
42 |
+
Keep only top_k logits and set the rest to -inf.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
46 |
+
top_k (int): The number of highest probability logits to keep.
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
torch.Tensor: Filtered logits where only the top k values remain, and all others are -inf.
|
51 |
+
"""
|
52 |
+
if top_k <= 0:
|
53 |
+
return logits
|
54 |
+
|
55 |
+
# Find top_k values
|
56 |
+
top_k = min(top_k, logits.size(-1))
|
57 |
+
vals, idx = torch.topk(logits, top_k, dim=-1)
|
58 |
+
# Get the smallest logit in the top_k
|
59 |
+
min_vals = vals[:, -1].unsqueeze(-1)
|
60 |
+
# Mask all logits that are < this min value
|
61 |
+
mask = logits < min_vals
|
62 |
+
logits[mask] = float("-inf")
|
63 |
+
return logits
|
64 |
+
|
65 |
+
|
66 |
+
def top_p_filtering(logits: torch.Tensor, top_p: float = 0.9):
|
67 |
+
"""
|
68 |
+
Keep the smallest set of logits whose cumulative probability >= top_p.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
logits (torch.Tensor): Logits of shape (batch_size, vocab_size).
|
72 |
+
top_p (float): Cumulative probability threshold.
|
73 |
+
|
74 |
+
Returns
|
75 |
+
-------
|
76 |
+
torch.Tensor: Filtered logits where only tokens within the top_p cumulative
|
77 |
+
probability mass are kept; the rest are set to -inf.
|
78 |
+
"""
|
79 |
+
if top_p >= 1.0:
|
80 |
+
return logits
|
81 |
+
|
82 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
83 |
+
cumulative_probs = torch.cumsum(softmax(sorted_logits, dim=-1), dim=-1)
|
84 |
+
|
85 |
+
# Identify where cumulative probability exceeds top_p
|
86 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
87 |
+
# Shift the mask to ensure we always keep at least one token
|
88 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
89 |
+
sorted_indices_to_remove[..., 0] = False
|
90 |
+
|
91 |
+
# Scatter to replicate the mask in the original ordering
|
92 |
+
for i in range(logits.size(0)):
|
93 |
+
remove_indices = sorted_indices[i, sorted_indices_to_remove[i]]
|
94 |
+
logits[i, remove_indices] = float("-inf")
|
95 |
+
|
96 |
+
return logits
|
97 |
+
|
98 |
+
|
99 |
+
def create_4d_from_2d_attn_mask(attn_mask: torch.Tensor, num_attn_heads: int):
|
100 |
+
"""Helper function to reshape attn_mask to 3D from 2D"""
|
101 |
+
assert (
|
102 |
+
len(attn_mask.shape) == 2
|
103 |
+
), f"Please provide attn_mask of shape (batch_size, seq_len), current shape {attn_mask.shape}"
|
104 |
+
|
105 |
+
bs, seq_len = attn_mask.shape
|
106 |
+
attn_mask = attn_mask.view(bs, 1, 1, seq_len)
|
107 |
+
attn_mask = attn_mask.expand(-1, num_attn_heads, -1, -1)
|
108 |
+
attn_mask = attn_mask.view(bs, num_attn_heads, -1, seq_len)
|
109 |
+
return attn_mask
|