Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 295.71 +/- 16.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a7433ab0360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7433ab0400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a7433ab04a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7433ab0540>", "_build": "<function ActorCriticPolicy._build at 0x7a7433ab05e0>", "forward": "<function ActorCriticPolicy.forward at 0x7a7433ab0680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7433ab0720>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a7433ab07c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a7433ab0860>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a7433ab0900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7433ab09a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7433ab0a40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a7433bfd580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741220956867997513, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCypD6jATM/c5+uPoX2L78Ga8M+wlJgPQAAAAAAAAAA5kwyPc8QMz/aRKW8DNczvzl/yzwCXtg7AAAAAAAAAACabac8VhdqPfdUrD1MDTS+FANSPe7cqzwAAAAAAAAAAJOMYD6UMUc/XlapPpw7Mr9HtYo+3Pa0PQAAAAAAAAAAwKBKPptiOT+0sCk+sb4qv5ZnOj5DZ9i8AAAAAAAAAABm/uA8aJbvPYY7Oz3Vi76+VhuuPbvN3jsAAAAAAAAAACN9mT4MkVQ/Hh2PPsGiOL8qOpg+4oqFPQAAAAAAAAAA8793vqG4Wj8F4GW+/3MZv3L0r74zGN07AAAAAAAAAABau5E9OI2Ku/t1wr3nIhq+QBLHuFnlybwAAIA/AACAPzpXhj7ztD0/CVwBP0zBUL+RALk+Jm6gPQAAAAAAAAAAprCkPexp+LlwU00zoOfQLhaqkTquDsGzAACAPwAAgD9zOhg+3aKfPntOZL2ej4q+ey7SPW97pr0AAAAAAAAAANOrNb7noJQ/HrO9vlUMML84fH++8EngvQAAAAAAAAAAAJH6PR8XeT83EyE+P5ZtvyZgiT0SmeY8AAAAAAAAAAATf2O+X7fZPngF+D5V6/q+9kTXvY2vqz4AAAAAAAAAAADcoLzmVp8/kFO4vc/uHb/8jzq9pdP5PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG/NGEwnICMAWyUS7GMAXSUR0CSB+9WIXTFdX2UKGgGR0Bh2lV/+bVjaAdN6ANoCEdAkghEGmk30nV9lChoBkdAcaTyY5T6zmgHS6RoCEdAkgiRfrrxAnV9lChoBkdAcpwvVmSQo2gHS8xoCEdAkgiRlQMx5HV9lChoBkdAcOk37UG3WmgHS6xoCEdAkgioHxBmgHV9lChoBkdAcMq8fV7QcGgHS6ZoCEdAkgjEf9xZMnV9lChoBkdAdKWaS9ugpWgHS8hoCEdAkgkHied073V9lChoBkdAc9XjR2KVIWgHS8toCEdAkgkU6T4cm3V9lChoBkdAcrJ7fYSQHWgHS9JoCEdAkgmYLG7z1HV9lChoBkdAcKtl3hXKbWgHS71oCEdAkgq+fVZs9HV9lChoBkdAcjOGwzLwF2gHS6toCEdAkgrQmeDnNnV9lChoBkdAcr+RjSXt0GgHS89oCEdAkgrmrwOOKnV9lChoBkdAct3w5eZ5RmgHS+JoCEdAkgtfsRg7YHV9lChoBkdAc2Zy/bj942gHS9RoCEdAkguFQ2uPm3V9lChoBkdAcGcyz5XU6WgHS5hoCEdAkguq//NqxnV9lChoBkdAc8SJg9eQdWgHS9loCEdAkgvE4WDYiHV9lChoBkdAb/iXFcY64mgHS7loCEdAkgvmZRbbDnV9lChoBkdAbq1M6BAfMmgHS69oCEdAkgwD9sJpnHV9lChoBkdAcuxntv4ub2gHS9JoCEdAkgwR9srNGHV9lChoBkdAcDr74zrNW2gHS7RoCEdAkgxaJdjXnXV9lChoBkdAcvUzcynDSGgHS8loCEdAkgyPuogmq3V9lChoBkdAcxIsfJV81GgHS7NoCEdAkgyhfrrxAnV9lChoBkdAcLVEKVpsXWgHS+BoCEdAkg2Sup0fYHV9lChoBkdAb+rfb9If82gHS8xoCEdAkg3D6vaDf3V9lChoBkdAcgFIuGsV+WgHS59oCEdAkg320VrRB3V9lChoBkdAcRKZkTYdyWgHS8JoCEdAkg7XAmAskXV9lChoBkdAcbuYgq3EymgHS51oCEdAkg72zF+/g3V9lChoBkdAcUtdPLxI8WgHS9poCEdAkg9BZuAI6nV9lChoBkdAbqwfoRqXW2gHS7NoCEdAkg9QdsBQvnV9lChoBkdAcSxR5C4SYmgHS7RoCEdAkg+6oMrmQ3V9lChoBkdAcCXTNMXaamgHS6loCEdAkg/GEbo8p3V9lChoBkdActfL2HtWuGgHS9ZoCEdAkg/Z2MbWE3V9lChoBkdAcvPXHR1HOWgHS95oCEdAkg/epCKJmHV9lChoBkdAcaDeVLSNO2gHS8VoCEdAkg/l8w5/9nV9lChoBkdAcq0HVwxWUGgHS61oCEdAkhAJ/PPcBXV9lChoBkdAbuJdmg8KX2gHS61oCEdAkhAWwRoRI3V9lChoBkdAcdf/LTx5LWgHS9BoCEdAkhAxxgiNbXV9lChoBkdAb7KBNEgGKWgHS69oCEdAkhGYOc2BKHV9lChoBkdAcQFi5d4VymgHS8FoCEdAkhHaCUX533V9lChoBkdAcioW7e2uxWgHS99oCEdAkhNRWtEG7nV9lChoBkdAcbWsZHd43WgHS7FoCEdAkhNhsVLzw3V9lChoBkdAcQC1F6RhdGgHS8toCEdAkhP2E9Mbm3V9lChoBkdAcP+E74i5eGgHS6VoCEdAkhRmO+7DmHV9lChoBkdAbzxo8p1A7mgHS6loCEdAkhR7qD9OynV9lChoBkdAcL1x8lXzUmgHS6toCEdAkhSDkuHvdHV9lChoBkdAcwpAVO9FnmgHS9RoCEdAkhTKXfIjnnV9lChoBkdAcS7KdQO4G2gHS9NoCEdAkhTYO6NEPXV9lChoBkdAcXhK508vEmgHS6poCEdAkhTdg4Otn3V9lChoBkdAcQEZ0jkdWGgHS7poCEdAkhUtRaX8fnV9lChoBkdAcaJB3Roh6mgHS7xoCEdAkhV3FUADJXV9lChoBkdAcddiQDFId2gHS+JoCEdAkhXKUu+RHXV9lChoBkdAc/5JA+pwTGgHS+FoCEdAkhXRjOLR8nV9lChoBkdAcUCyHEdeY2gHS5doCEdAkhXeCGvfTHV9lChoBkdAcA9FS88La2gHS7JoCEdAkhbbPD50sHV9lChoBkdAcRLhOxjawmgHS5poCEdAkhgyZrpJPXV9lChoBkdAcyAgdOqNqGgHS9NoCEdAkhkPv0AcUHV9lChoBkdAcD7okiUxEmgHS7FoCEdAkhkV6/qPfnV9lChoBkdAbzwVTrE9+2gHS6loCEdAkhk6yGBWgnV9lChoBkdAc5P5H3Dej2gHS+loCEdAkhmBCY1HfHV9lChoBkdAccIvkBCD3GgHS8ZoCEdAkhmiLQ5WBHV9lChoBkdAcTbLk0aZQmgHS7toCEdAkhmp2dNFjXV9lChoBkdAcB25Rjz7M2gHS7poCEdAkhmn9aUzK3V9lChoBkdAcCUZ3cHnlmgHS55oCEdAkhnUzO5avHV9lChoBkdAcqeI6r/822gHS7xoCEdAkhn6Dwpe/3V9lChoBkdAczJWWQfZEmgHS9ZoCEdAkhn4mkWRBHV9lChoBkdAclRxZ+x4ZGgHS6loCEdAkhoXRw6ySnV9lChoBkdAcYoKaoddV2gHS8loCEdAkhpsPe54GHV9lChoBkdAcWWpwjt5U2gHS6FoCEdAkhqkRJ2+wnV9lChoBkdAcXV4ACGN72gHS8doCEdAkhqtv863iXV9lChoBkdAcj4oBJZntmgHS7BoCEdAkhvofCAMD3V9lChoBkdAcWUn3+MqBmgHS7ZoCEdAkhzoX0oSc3V9lChoBkdAcx6dIGyHEmgHS7doCEdAkh0Sjk+5fHV9lChoBkdAcrcTaTOgQGgHS8JoCEdAkh0rJfYzznV9lChoBkdAcRe5Etuk12gHS5ZoCEdAkh08GxD9fnV9lChoBkdAbkYkona37WgHS7doCEdAkh2D2OAAhnV9lChoBkdAceXRFI/Z/WgHS8VoCEdAkh3KufVZtHV9lChoBkdAcbaeAuqWC2gHS71oCEdAkh3xOtW+5HV9lChoBkdAcY8JUYKpk2gHS6FoCEdAkh4e6iCaqnV9lChoBkdAb49ZTyauwGgHS7NoCEdAkh5ALy+YdHV9lChoBkdAcZF3I+4b0mgHS9FoCEdAkh49/4Irv3V9lChoBkdAc4ugFHJ9zGgHS99oCEdAkh5cSK3uu3V9lChoBkdAcj9TDO1OTWgHS+toCEdAkh54MrmQsHV9lChoBkdAZm5FhG6PKmgHTegDaAhHQJIemIfr8ix1fZQoaAZHQHELk4//vORoB0u3aAhHQJIem+evpyJ1fZQoaAZHQHMunLvCuU5oB0vgaAhHQJIeqeSSvDB1fZQoaAZHQG7VAPd2xIJoB0unaAhHQJIgLd56dDp1fZQoaAZHQHG6sKb8WKxoB0vXaAhHQJIgRFQVKwp1fZQoaAZHQHEIfaxoqTdoB0u3aAhHQJIgo/OdGy51fZQoaAZHQG+ZOU+s5n1oB0udaAhHQJIg6Yu01Il1fZQoaAZHQHKMPkNnXd1oB0vQaAhHQJIhSvmozep1fZQoaAZHQHHO2tuDSPVoB0uXaAhHQJIhhiH6/It1fZQoaAZHQHHqAmAskIJoB0vQaAhHQJIhj/lyR0V1fZQoaAZHQHFOxjz7MxJoB0u0aAhHQJIhrrgOz6d1fZQoaAZHQHK7uOn2qT9oB0vsaAhHQJIh0Y4yXUp1fZQoaAZHQHC6QeaKDTVoB0uqaAhHQJIh2SHM2WJ1fZQoaAZHQHGNOYx+KCRoB0vCaAhHQJIh3IhhYvF1fZQoaAZHQHHE0DQqqfhoB0vBaAhHQJIh9DG96C11fZQoaAZHQHNel72L5yloB0vZaAhHQJIh/2ugYgt1fZQoaAZHQHKpWYv38GdoB0u0aAhHQJIiCFTNt651fZQoaAZHQHHKUhNdqtZoB0vPaAhHQJIiP2OAAhl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 600, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92c406adddaec620ceaefe42bd7d9be4e429c9a31388593ad2389f07fbe3b53b
|
3 |
+
size 148175
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a7433ab0360>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7433ab0400>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a7433ab04a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7433ab0540>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a7433ab05e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a7433ab0680>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7433ab0720>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a7433ab07c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a7433ab0860>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a7433ab0900>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7433ab09a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7433ab0a40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a7433bfd580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1741220956867997513,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOCypD6jATM/c5+uPoX2L78Ga8M+wlJgPQAAAAAAAAAA5kwyPc8QMz/aRKW8DNczvzl/yzwCXtg7AAAAAAAAAACabac8VhdqPfdUrD1MDTS+FANSPe7cqzwAAAAAAAAAAJOMYD6UMUc/XlapPpw7Mr9HtYo+3Pa0PQAAAAAAAAAAwKBKPptiOT+0sCk+sb4qv5ZnOj5DZ9i8AAAAAAAAAABm/uA8aJbvPYY7Oz3Vi76+VhuuPbvN3jsAAAAAAAAAACN9mT4MkVQ/Hh2PPsGiOL8qOpg+4oqFPQAAAAAAAAAA8793vqG4Wj8F4GW+/3MZv3L0r74zGN07AAAAAAAAAABau5E9OI2Ku/t1wr3nIhq+QBLHuFnlybwAAIA/AACAPzpXhj7ztD0/CVwBP0zBUL+RALk+Jm6gPQAAAAAAAAAAprCkPexp+LlwU00zoOfQLhaqkTquDsGzAACAPwAAgD9zOhg+3aKfPntOZL2ej4q+ey7SPW97pr0AAAAAAAAAANOrNb7noJQ/HrO9vlUMML84fH++8EngvQAAAAAAAAAAAJH6PR8XeT83EyE+P5ZtvyZgiT0SmeY8AAAAAAAAAAATf2O+X7fZPngF+D5V6/q+9kTXvY2vqz4AAAAAAAAAAADcoLzmVp8/kFO4vc/uHb/8jzq9pdP5PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG/NGEwnICMAWyUS7GMAXSUR0CSB+9WIXTFdX2UKGgGR0Bh2lV/+bVjaAdN6ANoCEdAkghEGmk30nV9lChoBkdAcaTyY5T6zmgHS6RoCEdAkgiRfrrxAnV9lChoBkdAcpwvVmSQo2gHS8xoCEdAkgiRlQMx5HV9lChoBkdAcOk37UG3WmgHS6xoCEdAkgioHxBmgHV9lChoBkdAcMq8fV7QcGgHS6ZoCEdAkgjEf9xZMnV9lChoBkdAdKWaS9ugpWgHS8hoCEdAkgkHied073V9lChoBkdAc9XjR2KVIWgHS8toCEdAkgkU6T4cm3V9lChoBkdAcrJ7fYSQHWgHS9JoCEdAkgmYLG7z1HV9lChoBkdAcKtl3hXKbWgHS71oCEdAkgq+fVZs9HV9lChoBkdAcjOGwzLwF2gHS6toCEdAkgrQmeDnNnV9lChoBkdAcr+RjSXt0GgHS89oCEdAkgrmrwOOKnV9lChoBkdAct3w5eZ5RmgHS+JoCEdAkgtfsRg7YHV9lChoBkdAc2Zy/bj942gHS9RoCEdAkguFQ2uPm3V9lChoBkdAcGcyz5XU6WgHS5hoCEdAkguq//NqxnV9lChoBkdAc8SJg9eQdWgHS9loCEdAkgvE4WDYiHV9lChoBkdAb/iXFcY64mgHS7loCEdAkgvmZRbbDnV9lChoBkdAbq1M6BAfMmgHS69oCEdAkgwD9sJpnHV9lChoBkdAcuxntv4ub2gHS9JoCEdAkgwR9srNGHV9lChoBkdAcDr74zrNW2gHS7RoCEdAkgxaJdjXnXV9lChoBkdAcvUzcynDSGgHS8loCEdAkgyPuogmq3V9lChoBkdAcxIsfJV81GgHS7NoCEdAkgyhfrrxAnV9lChoBkdAcLVEKVpsXWgHS+BoCEdAkg2Sup0fYHV9lChoBkdAb+rfb9If82gHS8xoCEdAkg3D6vaDf3V9lChoBkdAcgFIuGsV+WgHS59oCEdAkg320VrRB3V9lChoBkdAcRKZkTYdyWgHS8JoCEdAkg7XAmAskXV9lChoBkdAcbuYgq3EymgHS51oCEdAkg72zF+/g3V9lChoBkdAcUtdPLxI8WgHS9poCEdAkg9BZuAI6nV9lChoBkdAbqwfoRqXW2gHS7NoCEdAkg9QdsBQvnV9lChoBkdAcSxR5C4SYmgHS7RoCEdAkg+6oMrmQ3V9lChoBkdAcCXTNMXaamgHS6loCEdAkg/GEbo8p3V9lChoBkdActfL2HtWuGgHS9ZoCEdAkg/Z2MbWE3V9lChoBkdAcvPXHR1HOWgHS95oCEdAkg/epCKJmHV9lChoBkdAcaDeVLSNO2gHS8VoCEdAkg/l8w5/9nV9lChoBkdAcq0HVwxWUGgHS61oCEdAkhAJ/PPcBXV9lChoBkdAbuJdmg8KX2gHS61oCEdAkhAWwRoRI3V9lChoBkdAcdf/LTx5LWgHS9BoCEdAkhAxxgiNbXV9lChoBkdAb7KBNEgGKWgHS69oCEdAkhGYOc2BKHV9lChoBkdAcQFi5d4VymgHS8FoCEdAkhHaCUX533V9lChoBkdAcioW7e2uxWgHS99oCEdAkhNRWtEG7nV9lChoBkdAcbWsZHd43WgHS7FoCEdAkhNhsVLzw3V9lChoBkdAcQC1F6RhdGgHS8toCEdAkhP2E9Mbm3V9lChoBkdAcP+E74i5eGgHS6VoCEdAkhRmO+7DmHV9lChoBkdAbzxo8p1A7mgHS6loCEdAkhR7qD9OynV9lChoBkdAcL1x8lXzUmgHS6toCEdAkhSDkuHvdHV9lChoBkdAcwpAVO9FnmgHS9RoCEdAkhTKXfIjnnV9lChoBkdAcS7KdQO4G2gHS9NoCEdAkhTYO6NEPXV9lChoBkdAcXhK508vEmgHS6poCEdAkhTdg4Otn3V9lChoBkdAcQEZ0jkdWGgHS7poCEdAkhUtRaX8fnV9lChoBkdAcaJB3Roh6mgHS7xoCEdAkhV3FUADJXV9lChoBkdAcddiQDFId2gHS+JoCEdAkhXKUu+RHXV9lChoBkdAc/5JA+pwTGgHS+FoCEdAkhXRjOLR8nV9lChoBkdAcUCyHEdeY2gHS5doCEdAkhXeCGvfTHV9lChoBkdAcA9FS88La2gHS7JoCEdAkhbbPD50sHV9lChoBkdAcRLhOxjawmgHS5poCEdAkhgyZrpJPXV9lChoBkdAcyAgdOqNqGgHS9NoCEdAkhkPv0AcUHV9lChoBkdAcD7okiUxEmgHS7FoCEdAkhkV6/qPfnV9lChoBkdAbzwVTrE9+2gHS6loCEdAkhk6yGBWgnV9lChoBkdAc5P5H3Dej2gHS+loCEdAkhmBCY1HfHV9lChoBkdAccIvkBCD3GgHS8ZoCEdAkhmiLQ5WBHV9lChoBkdAcTbLk0aZQmgHS7toCEdAkhmp2dNFjXV9lChoBkdAcB25Rjz7M2gHS7poCEdAkhmn9aUzK3V9lChoBkdAcCUZ3cHnlmgHS55oCEdAkhnUzO5avHV9lChoBkdAcqeI6r/822gHS7xoCEdAkhn6Dwpe/3V9lChoBkdAczJWWQfZEmgHS9ZoCEdAkhn4mkWRBHV9lChoBkdAclRxZ+x4ZGgHS6loCEdAkhoXRw6ySnV9lChoBkdAcYoKaoddV2gHS8loCEdAkhpsPe54GHV9lChoBkdAcWWpwjt5U2gHS6FoCEdAkhqkRJ2+wnV9lChoBkdAcXV4ACGN72gHS8doCEdAkhqtv863iXV9lChoBkdAcj4oBJZntmgHS7BoCEdAkhvofCAMD3V9lChoBkdAcWUn3+MqBmgHS7ZoCEdAkhzoX0oSc3V9lChoBkdAcx6dIGyHEmgHS7doCEdAkh0Sjk+5fHV9lChoBkdAcrcTaTOgQGgHS8JoCEdAkh0rJfYzznV9lChoBkdAcRe5Etuk12gHS5ZoCEdAkh08GxD9fnV9lChoBkdAbkYkona37WgHS7doCEdAkh2D2OAAhnV9lChoBkdAceXRFI/Z/WgHS8VoCEdAkh3KufVZtHV9lChoBkdAcbaeAuqWC2gHS71oCEdAkh3xOtW+5HV9lChoBkdAcY8JUYKpk2gHS6FoCEdAkh4e6iCaqnV9lChoBkdAb49ZTyauwGgHS7NoCEdAkh5ALy+YdHV9lChoBkdAcZF3I+4b0mgHS9FoCEdAkh49/4Irv3V9lChoBkdAc4ugFHJ9zGgHS99oCEdAkh5cSK3uu3V9lChoBkdAcj9TDO1OTWgHS+toCEdAkh54MrmQsHV9lChoBkdAZm5FhG6PKmgHTegDaAhHQJIemIfr8ix1fZQoaAZHQHELk4//vORoB0u3aAhHQJIem+evpyJ1fZQoaAZHQHMunLvCuU5oB0vgaAhHQJIeqeSSvDB1fZQoaAZHQG7VAPd2xIJoB0unaAhHQJIgLd56dDp1fZQoaAZHQHG6sKb8WKxoB0vXaAhHQJIgRFQVKwp1fZQoaAZHQHEIfaxoqTdoB0u3aAhHQJIgo/OdGy51fZQoaAZHQG+ZOU+s5n1oB0udaAhHQJIg6Yu01Il1fZQoaAZHQHKMPkNnXd1oB0vQaAhHQJIhSvmozep1fZQoaAZHQHHO2tuDSPVoB0uXaAhHQJIhhiH6/It1fZQoaAZHQHHqAmAskIJoB0vQaAhHQJIhj/lyR0V1fZQoaAZHQHFOxjz7MxJoB0u0aAhHQJIhrrgOz6d1fZQoaAZHQHK7uOn2qT9oB0vsaAhHQJIh0Y4yXUp1fZQoaAZHQHC6QeaKDTVoB0uqaAhHQJIh2SHM2WJ1fZQoaAZHQHGNOYx+KCRoB0vCaAhHQJIh3IhhYvF1fZQoaAZHQHHE0DQqqfhoB0vBaAhHQJIh9DG96C11fZQoaAZHQHNel72L5yloB0vZaAhHQJIh/2ugYgt1fZQoaAZHQHKpWYv38GdoB0u0aAhHQJIiCFTNt651fZQoaAZHQHHKUhNdqtZoB0vPaAhHQJIiP2OAAhl1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 600,
|
55 |
+
"n_steps": 2048,
|
56 |
+
"gamma": 0.99,
|
57 |
+
"gae_lambda": 0.95,
|
58 |
+
"ent_coef": 0.0,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 10,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e8c59cde0ac3c86e4622759aa5b41c3aa57e7f3ccd9e8b11eb7d9fd064dd547
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:902d8a0a63b8c83521616c0d40fe336b64760d159c4b5a4ec00fb866f3a4345a
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:101fa8a9eaec7eb50ea90e9c31912ab2b97fab0005c368243c6b3bbac4905cb8
|
3 |
+
size 180285
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 295.7145572, "std_reward": 16.774792158416584, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-06T00:49:07.466383"}
|