maayanorner commited on
Commit
c9de96d
·
verified ·
1 Parent(s): 91f4685

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -18
README.md CHANGED
@@ -7,6 +7,8 @@ Known Issues:
7
  - While the results look pretty good, the model was not evaluated.
8
  - Short inputs (i.e., "articles" of one line) will yield a contextless "summary".
9
 
 
 
10
 
11
  # Data:
12
  https://github.com/IAHLT/summarization_he
@@ -31,30 +33,13 @@ def summarize(text, tokenizer, model, num_beams=4, temperature=1, max_new_tokens
31
  generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=False)
32
 
33
  return generated_text
34
-
35
-
36
- # optional
37
- use_4bit = True
38
- bnb_4bit_compute_dtype = "float16"
39
- bnb_4bit_quant_type = "nf4"
40
- use_nested_quant = False
41
- compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
42
 
43
 
44
- # optional
45
- bnb_config = BitsAndBytesConfig(
46
- load_in_4bit=use_4bit,
47
- bnb_4bit_quant_type=bnb_4bit_quant_type,
48
- bnb_4bit_compute_dtype=compute_dtype,
49
- bnb_4bit_use_double_quant=use_nested_quant,
50
- )
51
-
52
- model_path = 'maayanorner/hebrew-summarization-llm'
53
 
54
  model = AutoModelForCausalLM.from_pretrained(
55
  model_path,
56
  trust_remote_code=True,
57
- quantization_config=bnb_config # optional
58
  )
59
  model.to('cuda')
60
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 
7
  - While the results look pretty good, the model was not evaluated.
8
  - Short inputs (i.e., "articles" of one line) will yield a contextless "summary".
9
 
10
+ 4-bit quantized version:
11
+ https://huggingface.co/maayanorner/hebrew-summarization-llm-4bit
12
 
13
  # Data:
14
  https://github.com/IAHLT/summarization_he
 
33
  generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=False)
34
 
35
  return generated_text
 
 
 
 
 
 
 
 
36
 
37
 
38
+ model_path = 'maayanorner/hebrew-summarization-llm' # or https://huggingface.co/maayanorner/hebrew-summarization-llm-4bit
 
 
 
 
 
 
 
 
39
 
40
  model = AutoModelForCausalLM.from_pretrained(
41
  model_path,
42
  trust_remote_code=True,
 
43
  )
44
  model.to('cuda')
45
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)