File size: 3,646 Bytes
b31989d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: apache-2.0
language:
- en
pipeline_tag: visual-question-answering
tags:
- chat
---
# mPLUG-Owl3
## Introduction
mPLUG-Owl3 is a state-of-the-art multi-modal large language model designed to tackle the challenges of long image sequence understanding. We propose Hyper Attention, which boosts the speed of long visual sequence understanding in multimodal large language models by sixfold, allowing for processing of visual sequences that are eight times longer. Meanwhile, we maintain excellent performance on single-image, multi-image, and video tasks.
Github: [mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl)
## Quickstart
Load the mPLUG-Owl3. We now only support attn_implementation in ```['sdpa', 'flash_attention_2']```.
```Python
import torch
config = mPLUGOwl3Config.from_pretrained('./checkpoint_240728')
print(config)
# model = mPLUGOwl3Model(config).cuda().half()
model = mPLUGOwl3Model.from_pretrained('./checkpoint_240728', attn_implementation='sdpa', torch_dtype=torch.half)
model.eval().cuda()
```
Chat with images.
```Python
from PIL import Image
from transformers import AutoTokenizer, AutoProcessor
from decord import VideoReader, cpu # pip install decord
model_path = 'mPLUG/mPLUG-Owl3-7B-240728'
tokenizer = AutoTokenizer.from_pretrained(model_path)
processor = model.init_processor(tokenizer)
image = Image.new('RGB', (500, 500), color='red')
messages = [
{"role": "user", "content": """<|image|>
Describe this image."""},
{"role": "assistant", "content": ""}
]
inputs = processor(messages, images=image, videos=None)
inputs.to('cuda')
inputs.update({
'tokenizer': tokenizer,
'max_new_tokens':100,
'decode_text':True,
})
g = model.generate(**inputs)
print(g)
```
Chat with a video.
```Python
from PIL import Image
from transformers import AutoTokenizer, AutoProcessor
from decord import VideoReader, cpu # pip install decord
model_path = 'mPLUG/mPLUG-Owl3-7B-240728'
tokenizer = AutoTokenizer.from_pretrained(model_path)
processor = model.init_processor(tokenizer)
messages = [
{"role": "user", "content": """<|video|>
Describe this video."""},
{"role": "assistant", "content": ""}
]
videos = ['/nas-mmu-data/examples/car_room.mp4']
MAX_NUM_FRAMES=16
def encode_video(video_path):
def uniform_sample(l, n):
gap = len(l) / n
idxs = [int(i * gap + gap / 2) for i in range(n)]
return [l[i] for i in idxs]
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1) # FPS
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
print('num frames:', len(frames))
return frames
video_frames = [encode_video(_) for _ in videos]
inputs = processor(messages, images=None, videos=video_frames)
inputs.to('cuda')
inputs.update({
'tokenizer': tokenizer,
'max_new_tokens':100,
'decode_text':True,
})
g = model.generate(**inputs)
print(g)
```
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{ye2024mplugowl3longimagesequenceunderstanding,
title={mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models},
author={Jiabo Ye and Haiyang Xu and Haowei Liu and Anwen Hu and Ming Yan and Qi Qian and Ji Zhang and Fei Huang and Jingren Zhou},
year={2024},
eprint={2408.04840},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2408.04840},
}
```
|