File size: 15,646 Bytes
b31989d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import random
from typing import Optional, Union, Dict, Any, List

from einops import rearrange, repeat
import torch
import math
import PIL.Image
import PIL.ImageSequence
import numpy as np
import PIL
from PIL import Image

from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers import AutoImageProcessor
from transformers.image_transforms import to_channel_dimension_format
from transformers.image_utils import (
    ImageInput, 
    make_list_of_images, 
    valid_images, 
    is_torch_tensor, 
    is_batched,
    to_numpy_array, 
    infer_channel_dimension_format,
    ChannelDimension
)
from torchvision.ops.boxes import box_area
from torchvision.transforms import functional as F
from torchvision.transforms.transforms import InterpolationMode
from torchvision import transforms

def recursive_converter(converter, value):
    if isinstance(value, list):
        new_value = []
        for v in value:
            new_value += [recursive_converter(converter, v)]
        return new_value
    else:
        return converter(value)

def box_iou(boxes1, area1, boxes2, eps=1e-5):
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / (union+eps)
    return iou, union

available_anchor_strategy = ['docowl', 'random', 'highest', 'last', 'llava']

grid_dict = {
    'grid_33':[
        (1,1),
        (1,2),(2,1),
        (1,3),(3,1),
        (2,2),(1,4),(4,1),
        (1,5),(5,1),
        (1,6),(6,1),(2,3),(3,2),
        (1,7),(7,1),
        (4,2),(2,4),(1,8),(8,1),
        (3,3),(1,9),(9,1)],
    'grid_squ_3x3':[
        (1,1),(2,2),(3,3)
    ],
    'grid_squ_4':[
        (2,2),(1,3),(1,4),(3,1),(4,1)
    ],
    'grid_squ_6':[
        (2,2),(1,3),(1,4),(3,1),(4,1), (2,3),(3,2)
    ],
    'grid_squ_2':[
        (2,1)
    ],
    'grid_squ_9':[
        (1,1),
        (1,2),(2,1),
        (1,3),(3,1),
        (2,2),(1,4),(4,1),
        (1,5),(5,1),
        (1,6),(6,1),(2,3),(3,2),
        (1,7),(7,1),
        (4,2),(2,4),(1,8),(8,1),
        (3,3),(1,9),(9,1)],
}

cut_prompt_template_dict = {
    'v0': lambda img_token, h, w: f''.join([f"{img_token}" for i in range(h) for j in range(w)]),
    'v1': lambda img_token, h, w: f'Cut to {h} rows {w} columns, '+ ' '.join([f"subimg({i},{j}){img_token}"for i in range(h) for j in range(w)]),
    'v1_global': lambda img_token, h, w: f'Cut to {h} rows {w} columns with a global view, '+ ' '.join([f"subimg({i},{j}){img_token}"for i in range(h) for j in range(w)]+[f"global_view{img_token}"]),
    'v2_global': lambda img_token, h, w: f'Cut to {h} rows {w} columns with a global view\n'+ '\n'.join([' '.join([f"subimg({i},{j}){img_token}" for j in range(w)]) for i in range(h)])+f"\nglobal_view{img_token}",
}

def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
    # anchors x1 y1 x2 y2

    # image_size: (h, w)
    # xyxy
    input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)

    boxes1 = anchors
    boxes2 = input_image_bbox
    boxes3 = anchors.clone()
    # y2
    boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
    
    area1 = anchors_areas
    
    iou, _ = box_iou(boxes1, area1, boxes2)
    iou = iou.squeeze(1)
    shape_iou, _ = box_iou(boxes1, area1, boxes3)
    shape_iou = shape_iou.diag()
    # 优先匹配形状接近 再匹配分辨率接近
    index = torch.argmax(shape_iou*100+iou,dim=0)
    return index

def select_best_resolution(anchors, anchors_areas, input_image_size): # TODO For a futher check
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_size = (input_image_size[1], input_image_size[0])
    possible_resolutions = [(_[2], _[3]) for _ in anchors] # xyxy -> w,h

    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float('inf')

    index = 0
    for i, (width, height) in enumerate(possible_resolutions):
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)
            index = i

    return index

def build_cut_shape_indices(cut_shape):
    # cut_shape: a list of (nh,nw)
    cut_shape_indices = []
    for shape in cut_shape:
        n=shape[0]*shape[1]
        indices = torch.cat([
            repeat(torch.tensor(shape),'l -> n l',n=n),
            torch.arange(n).unsqueeze(1)
        ], dim=1)
        assert indices.shape[0] == n
        assert indices.shape[1] == 3 # nh,nw,idx

        cut_shape_indices.append(indices)
    cut_shape_indices = torch.cat(cut_shape_indices,dim=0).long()
    return cut_shape_indices
    
class AnchorResize(torch.nn.Module):
  
    def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None, anchor_strategy='docowl'):
        super().__init__()
        self.image_size = image_size
        # xyxy
        self.anchors = torch.tensor(
            [[0, 0, _[1]*image_size[1], _[0]*image_size[0]] 
            for _ in anchors], requires_grad=False
        )
        
        self.anchor_areas = box_area(self.anchors)

        self.interpolation = interpolation
        self.antialias = antialias
        self.anchor_strategy = anchor_strategy
        assert self.anchor_strategy in available_anchor_strategy

    def resize_global(self, img):
        return F.resize(img, self.image_size, self.interpolation, max_size=None, antialias=self.antialias)

    def forward(self, img, skip_resize=False):
        """
        Args:
            img (PIL Image or Tensor): Image to be scaled.

        Returns:
            PIL Image or Tensor: Rescaled image.
        """
        if self.anchor_strategy == 'docowl':
            selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
        elif self.anchor_strategy == 'random':
            selected_anchor = random.randint(0,len(self.anchors)-1)
        elif self.anchor_strategy == 'highest':
            # 选面积最大的 在这个基础上 尽可能选最方正的
            selected_anchor = torch.argmax(self.anchors[:,2]*self.anchors[:,3]*100-torch.abs(self.anchors[:,2]-self.anchors[:,3]))
        elif self.anchor_strategy == 'last':
            selected_anchor = len(self.anchors)-1
        elif self.anchor_strategy == 'llava':
            selected_anchor = select_best_resolution(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
        else:
            selected_anchor = None
        assert selected_anchor is not None

        target_size = self.anchors[selected_anchor][2:].tolist() # w,h
        if skip_resize:
            # for debug
            return selected_anchor
        return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor

    def __repr__(self) -> str:
        detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
        return f"{self.__class__.__name__}{detail}"

class CutMixin:
    def __init__(self, cut_cfg={"anchors": "grid_squ_6", "anchor_strategy": "docowl", "cut_prompt": "v2", "add_global": True, "cut_prob": 1.0}) -> None:
        if cut_cfg is None:
            self.cut_enable = False
            return
        else:
            self.cut_enable = True
        image_size = self.image_size
        anchors = cut_cfg.get('anchors','grid_33')
        anchor_strategy = cut_cfg.get('anchor_strategy','docowl')
        cut_prompt = cut_cfg.get('cut_prompt','v0')
        self.cut_prob = cut_cfg.get('cut_prob', 1.0)
        
        self.force_shape_cut = cut_cfg.get('force_shape_cut', False)
        force_shape_cut_anchors = cut_cfg.get('force_shape_cut_anchors', 'force_shape_cut_anchors')


        self.add_global = cut_cfg.get('add_global', False)
        
        # h,w
        if isinstance(image_size, int):
            image_size = (image_size, image_size)
        self.image_size = image_size

        if anchors in grid_dict:
            anchors = grid_dict[anchors]
        else:
            anchors = eval(anchors)
        self.anchors = [tuple(_) for _ in anchors]
        self.anchor_max = max([max(_) for _ in self.anchors])
        self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC, anchor_strategy=anchor_strategy)

        if force_shape_cut_anchors in grid_dict:
            force_shape_cut_anchors = grid_dict[force_shape_cut_anchors]
        else:
            force_shape_cut_anchors = eval(force_shape_cut_anchors)
        self.force_shape_cut_anchors = [tuple(_) for _ in force_shape_cut_anchors]
        self.force_shape_cut_anchors_max = max([max(_) for _ in self.force_shape_cut_anchors])
      


        self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)

        # 把image processor的缩放去掉 只保留后面的变换
        self.image_transform = transforms.Compose(self.image_transform.transforms[1:])
        if self.add_global:
            self.cut_prompt_template = cut_prompt_template_dict[cut_prompt+'_global']
        else:
            self.cut_prompt_template = cut_prompt_template_dict[cut_prompt]

        self.media_tokens = ["<|image|>", "<|video|>"]



    def _process_image(self, images):
        new_images = []
        cut_shape = []
        for image in images:
            raw_image = image
            
            image, selected_anchor = self.resizer(image)
            image_input = self.image_transform(image) # h,w,3 -> 3,h,w
            cut_shape.append((image_input.shape[1]//self.image_size[0], image_input.shape[2]//self.image_size[1])) # cut_h, cut_w
            image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
         
            new_images.append(image_input)
        
            if self.add_global:
                new_images.append(self.image_transform(self.resizer.resize_global(raw_image)).unsqueeze(0))
                cut_shape.append((1,1))

        new_images = torch.cat(new_images,dim=0)
        cut_shape_indices = build_cut_shape_indices(cut_shape)
        return new_images, cut_shape, cut_shape_indices

class mPLUGOwl3BatchFeature(BatchFeature):
    r"""
    Extend from BatchFeature for supporting various image size
    """
    def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
        super().__init__(data)
        self.convert_to_tensors(tensor_type=tensor_type)

    def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
        if tensor_type is None:
            return self
        
        is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)

        def converter(value):
            try:
                if not is_tensor(value):
                    tensor = as_tensor(value)
                    return tensor
            except:  # noqa E722
                if key == "overflowing_values":
                    raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
                raise ValueError(
                    "Unable to create tensor, you should probably activate padding "
                    "with 'padding=True' to have batched tensors with the same length."
                )


        for key, value in self.items():
            self[key] = recursive_converter(converter, value)
        return self
            
    def to(self, *args, **kwargs) -> "mPLUGOwl3BatchFeature":
        requires_backends(self, ["torch"])
        import torch

        def cast_tensor(v):
            # check if v is a floating point
            if torch.is_floating_point(v):
                # cast and send to device
                return v.to(*args, **kwargs)
            elif device is not None:
                return v.to(device=device)
            else:
                return v

        new_data = {}
        device = kwargs.get("device")
        # Check if the args are a device or a dtype
        if device is None and len(args) > 0:
            # device should be always the first argument
            arg = args[0]
            if is_torch_dtype(arg):
                # The first argument is a dtype
                pass
            elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
                device = arg
            else:
                # it's something else
                raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
        # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
        for k, v in self.items():
            new_data[k] = recursive_converter(cast_tensor, v)
        self.data = new_data
        return self


class mPLUGOwl3ImageProcessor(BaseImageProcessor, CutMixin):
    model_input_names = ["pixel_values"]

    def __init__(
            self, 
            image_size,
            mean=[0.5, 0.5, 0.5],
            std=[0.5, 0.5, 0.5],
            **kwargs):
        super().__init__(**kwargs)
        self.image_size = image_size
        self.image_transform = transforms.Compose([
            transforms.Resize((image_size, image_size), interpolation=Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize(mean, std),
        ])
        CutMixin.__init__(self)

    def preprocess(
            self, 
            images: Union[Image.Image, List[Image.Image]],
            cut_enable=True,
            **kwargs
        ) -> mPLUGOwl3BatchFeature:
        if isinstance(images, Image.Image):
            images_list = [images]
        else:
            images_list = images

        if self.cut_enable and cut_enable:
            image_data, cut_shape, cut_shape_indices = self._process_image(images_list)
        else:
            image_data = [self.image_transform(self.resizer.resize_global(image)) for image in images_list]
            image_data = torch.stack(image_data, dim=0)
            cut_shape = cut_shape_indices = None
            
        return mPLUGOwl3BatchFeature(data={'pixel_values': image_data, 'cut_shape':cut_shape, 'cut_shape_indices':cut_shape_indices})

AutoImageProcessor.register("mPLUGOwl3ImageProcessor", mPLUGOwl3ImageProcessor)