File size: 2,912 Bytes
48eac64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- generated_from_trainer
model-index:
- name: modernbert-large-docx
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# modernbert-large-docx
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5145
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 148
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5541 | 0.1686 | 100 | 0.5688 |
| 0.5465 | 0.3373 | 200 | 0.5476 |
| 0.5054 | 0.5059 | 300 | 0.5369 |
| 0.5113 | 0.6745 | 400 | 0.5335 |
| 0.5281 | 0.8432 | 500 | 0.5354 |
| 0.5441 | 1.0118 | 600 | 0.5312 |
| 0.4983 | 1.1804 | 700 | 0.5269 |
| 0.5151 | 1.3491 | 800 | 0.5257 |
| 0.5247 | 1.5177 | 900 | 0.5258 |
| 0.5212 | 1.6863 | 1000 | 0.5343 |
| 0.5243 | 1.8550 | 1100 | 0.5190 |
| 0.5007 | 2.0236 | 1200 | 0.5206 |
| 0.4971 | 2.1922 | 1300 | 0.5260 |
| 0.504 | 2.3609 | 1400 | 0.5264 |
| 0.5152 | 2.5295 | 1500 | 0.5229 |
| 0.5269 | 2.6981 | 1600 | 0.5264 |
| 0.5202 | 2.8668 | 1700 | 0.5282 |
| 0.5117 | 3.0354 | 1800 | 0.5179 |
| 0.5163 | 3.2040 | 1900 | 0.5168 |
| 0.4929 | 3.3727 | 2000 | 0.5165 |
| 0.5017 | 3.5413 | 2100 | 0.5151 |
| 0.5031 | 3.7099 | 2200 | 0.5155 |
| 0.52 | 3.8786 | 2300 | 0.5155 |
| 0.5055 | 4.0472 | 2400 | 0.5143 |
| 0.4968 | 4.2159 | 2500 | 0.5138 |
| 0.4868 | 4.3845 | 2600 | 0.5147 |
| 0.4888 | 4.5531 | 2700 | 0.5145 |
| 0.4994 | 4.7218 | 2800 | 0.5145 |
| 0.4911 | 4.8904 | 2900 | 0.5145 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.1
|