Initial model
Browse files- README.md +341 -0
- config.json +75 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- sample1671.flac +0 -0
- sample687.flac +0 -0
- special_tokens_map.json +1 -0
- test_predicted.csv +0 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fa
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
widget:
|
12 |
+
- label: Common Voice sample 687
|
13 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian/resolve/main/sample687.flac
|
14 |
+
- label: Common Voice sample 1671
|
15 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian/resolve/main/sample1671.flac
|
16 |
+
model-index:
|
17 |
+
- name: XLSR Wav2Vec2 Persian (Farsi) by Mehrdad Farahani
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: Common Voice fa
|
24 |
+
type: common_voice
|
25 |
+
args: fa
|
26 |
+
metrics:
|
27 |
+
- name: Test WER
|
28 |
+
type: wer
|
29 |
+
value: 32.09
|
30 |
+
- name: Test CER
|
31 |
+
type: cer
|
32 |
+
value: 8.23
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
+
# Wav2Vec2-Large-XLSR-53-tw-gpt
|
37 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Persian (Farsi) using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
|
38 |
+
|
39 |
+
## Usage
|
40 |
+
The model can be used directly (without a language model) as follows:
|
41 |
+
|
42 |
+
```bash
|
43 |
+
!pip install git+https://github.com/huggingface/datasets.git
|
44 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
45 |
+
!pip install torchaudio
|
46 |
+
!pip install librosa
|
47 |
+
!pip install jiwer
|
48 |
+
!pip install hazm
|
49 |
+
```
|
50 |
+
|
51 |
+
```python
|
52 |
+
import torch
|
53 |
+
import torchaudio
|
54 |
+
from datasets import load_dataset, load_metric
|
55 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
56 |
+
|
57 |
+
import librosa
|
58 |
+
|
59 |
+
import pandas as pd
|
60 |
+
import numpy as np
|
61 |
+
|
62 |
+
import hazm
|
63 |
+
|
64 |
+
import random
|
65 |
+
import os
|
66 |
+
import string
|
67 |
+
import six
|
68 |
+
import re
|
69 |
+
|
70 |
+
import IPython.display as ipd
|
71 |
+
|
72 |
+
# Loading the datasets
|
73 |
+
dataset = load_dataset("common_voice", "fa", split="test[:2%]")
|
74 |
+
|
75 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
76 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian")
|
77 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian").to(device)
|
78 |
+
|
79 |
+
|
80 |
+
# Preprocessing the datasets.
|
81 |
+
# Normalizing the texts
|
82 |
+
_normalizer = hazm.Normalizer()
|
83 |
+
def multiple_replace(mapping, text):
|
84 |
+
pattern = "|".join(map(re.escape, mapping.keys()))
|
85 |
+
return re.sub(pattern, lambda m: mapping[m.group()], str(text))
|
86 |
+
|
87 |
+
def convert_weirdos(input_str):
|
88 |
+
# character
|
89 |
+
mapping = {
|
90 |
+
'ك': 'ک',
|
91 |
+
'دِ': 'د',
|
92 |
+
'بِ': 'ب',
|
93 |
+
'زِ': 'ز',
|
94 |
+
'ذِ': 'ذ',
|
95 |
+
'شِ': 'ش',
|
96 |
+
'سِ': 'س',
|
97 |
+
'ى': 'ی',
|
98 |
+
'ي': 'ی',
|
99 |
+
'أ': 'ا',
|
100 |
+
'ؤ': 'و',
|
101 |
+
"ے": "ی",
|
102 |
+
"ۀ": "ه",
|
103 |
+
"ﭘ": "پ",
|
104 |
+
"ﮐ": "ک",
|
105 |
+
"ﯽ": "ی",
|
106 |
+
"ﺎ": "ا",
|
107 |
+
"ﺑ": "ب",
|
108 |
+
"ﺘ": "ت",
|
109 |
+
"ﺧ": "خ",
|
110 |
+
"ﺩ": "د",
|
111 |
+
"ﺱ": "س",
|
112 |
+
"ﻀ": "ض",
|
113 |
+
"ﻌ": "ع",
|
114 |
+
"ﻟ": "ل",
|
115 |
+
"ﻡ": "م",
|
116 |
+
"ﻢ": "م",
|
117 |
+
"ﻪ": "ه",
|
118 |
+
"ﻮ": "و",
|
119 |
+
"ئ": "ی",
|
120 |
+
'ﺍ': "ا",
|
121 |
+
'ة': "ه",
|
122 |
+
'ﯾ': "ی",
|
123 |
+
'ﯿ': "ی",
|
124 |
+
'ﺒ': "ب",
|
125 |
+
'ﺖ': "ت",
|
126 |
+
'ﺪ': "د",
|
127 |
+
'ﺮ': "ر",
|
128 |
+
'ﺴ': "س",
|
129 |
+
'ﺷ': "ش",
|
130 |
+
'ﺸ': "ش",
|
131 |
+
'ﻋ': "ع",
|
132 |
+
'ﻤ': "م",
|
133 |
+
'ﻥ': "ن",
|
134 |
+
'ﻧ': "ن",
|
135 |
+
'ﻭ': "و",
|
136 |
+
'ﺭ': "ر",
|
137 |
+
"ﮔ": "گ",
|
138 |
+
}
|
139 |
+
|
140 |
+
# notation
|
141 |
+
mapping.update(**{
|
142 |
+
"#": " ",
|
143 |
+
"!": " ",
|
144 |
+
"؟": " ",
|
145 |
+
"?": " ",
|
146 |
+
"«": " ",
|
147 |
+
"»": " ",
|
148 |
+
"ء": " ",
|
149 |
+
"،": " ",
|
150 |
+
"(": " ",
|
151 |
+
")": " ",
|
152 |
+
"؛": " ",
|
153 |
+
"'ٔ": " ",
|
154 |
+
"٬": " ",
|
155 |
+
'ٔ': " ",
|
156 |
+
",": " ",
|
157 |
+
"?": " ",
|
158 |
+
".": " ",
|
159 |
+
"!": " ",
|
160 |
+
"-": " ",
|
161 |
+
";": " ",
|
162 |
+
":": " ",
|
163 |
+
'"': " ",
|
164 |
+
"“": " ",
|
165 |
+
"%": " ",
|
166 |
+
"‘": " ",
|
167 |
+
"”": " ",
|
168 |
+
"�": " ",
|
169 |
+
"–": " ",
|
170 |
+
"…": " ",
|
171 |
+
"_": " ",
|
172 |
+
})
|
173 |
+
|
174 |
+
return multiple_replace(mapping, input_str)
|
175 |
+
|
176 |
+
|
177 |
+
PERSIAN_ALPHA = "\u0621-\u0628\u062A-\u063A\u0641-\u0642\u0644-\u0648\u064E-\u0651\u0655\u067E\u0686\u0698\u06A9\u06AF\u06BE\u06CC" # noqa: E501
|
178 |
+
PERSIAN_DIGIT = "\u06F0-\u06F9"
|
179 |
+
|
180 |
+
COMMON_ARABIC_ALPHA = "\u0629\u0643\u0649-\u064B\u064D\u06D5"
|
181 |
+
COMMON_ARABIC_DIGIT = "\u0660-\u0669"
|
182 |
+
|
183 |
+
ZWNJ = "\u200c"
|
184 |
+
|
185 |
+
ENGLISH = "a-z0-9\&"
|
186 |
+
PERSIAN = PERSIAN_ALPHA + PERSIAN_DIGIT + COMMON_ARABIC_ALPHA + COMMON_ARABIC_DIGIT + ZWNJ
|
187 |
+
|
188 |
+
|
189 |
+
def normalizer(text, min_ratio=1.1):
|
190 |
+
text = text.lower()
|
191 |
+
text = _normalizer.normalize(text)
|
192 |
+
text = text.replace("\u200c", " ")
|
193 |
+
text = text.replace("\u200d", " ")
|
194 |
+
text = text.replace("\u200e", " ")
|
195 |
+
text = text.replace("\u200f", " ")
|
196 |
+
text = text.replace("\ufeff", " ")
|
197 |
+
text = convert_weirdos(text)
|
198 |
+
|
199 |
+
words = [word.replace("آ", "ا") if "آ" in word and not word.startswith("آ") else word for word in text.split()]
|
200 |
+
text = " ".join(words)
|
201 |
+
|
202 |
+
if not text or not len(text) > 2:
|
203 |
+
return None
|
204 |
+
|
205 |
+
en_text = re.sub(r"[^" + ENGLISH + "+]", " ", six.ensure_str(text))
|
206 |
+
en_text = re.sub(r"\s+", " ", en_text)
|
207 |
+
if len(en_text) > 1:
|
208 |
+
return None
|
209 |
+
|
210 |
+
return text
|
211 |
+
|
212 |
+
|
213 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
214 |
+
def remove_special_characters(batch):
|
215 |
+
text = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
216 |
+
text = normalizer(text)
|
217 |
+
batch["sentence"] = text
|
218 |
+
return batch
|
219 |
+
|
220 |
+
# We need to read the aduio files as arrays
|
221 |
+
def speech_file_to_array_fn(batch):
|
222 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
223 |
+
speech_array = speech_array.squeeze().numpy()
|
224 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
225 |
+
|
226 |
+
batch["speech"] = speech_array
|
227 |
+
return batch
|
228 |
+
|
229 |
+
def predict(batch):
|
230 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
231 |
+
|
232 |
+
input_values = features.input_values.to(device)
|
233 |
+
attention_mask = features.attention_mask.to(device)
|
234 |
+
|
235 |
+
with torch.no_grad():
|
236 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
237 |
+
|
238 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
239 |
+
|
240 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
241 |
+
return batch
|
242 |
+
|
243 |
+
dataset = dataset.map(remove_special_characters)
|
244 |
+
dataset = dataset.map(speech_file_to_array_fn, remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])))
|
245 |
+
result = dataset.map(predict)
|
246 |
+
```
|
247 |
+
|
248 |
+
## Prediction
|
249 |
+
|
250 |
+
```python
|
251 |
+
max_items = np.random.randint(0, len(result), 20).tolist()
|
252 |
+
for i in max_items:
|
253 |
+
reference, predicted = result["sentence"][i], result["predicted"][i]
|
254 |
+
print("reference:", reference)
|
255 |
+
print("predicted:", predicted)
|
256 |
+
print('---')
|
257 |
+
```
|
258 |
+
|
259 |
+
```text
|
260 |
+
reference: اطلاعات مسری است
|
261 |
+
predicted: اطلاعات مسری است
|
262 |
+
---
|
263 |
+
reference: نه منظورم اینه که وقتی که ساکته چه کاریه خودمونه بندازیم زحمت
|
264 |
+
predicted: نه منظورم اینه که وقتی که ساکت چی کاریه خودمونو بندازیم زحمت
|
265 |
+
---
|
266 |
+
reference: من آب پرتقال می خورم لطفا
|
267 |
+
predicted: من آپ ارتغال می خورم لطفا
|
268 |
+
---
|
269 |
+
reference: وقت آن رسیده آنها را که قدم پیش میگذارند بزرگ بداریم
|
270 |
+
predicted: وقت آ رسیده آنها را که قدم پیش میگذارند بزرگ بداریم
|
271 |
+
---
|
272 |
+
reference: سیم باتری دارید
|
273 |
+
predicted: سیم باتری دارید
|
274 |
+
---
|
275 |
+
reference: این بهتره تا اینکه به بهونه درس و مشق هر روز بره خونه شون
|
276 |
+
predicted: این بهتره تا اینکه به بهمونه درسومش خرروز بره خونه اشون
|
277 |
+
---
|
278 |
+
reference: ژاکت تنگ است
|
279 |
+
predicted: ژاکت تنگ است
|
280 |
+
---
|
281 |
+
reference: آت و اشغال های خیابان
|
282 |
+
predicted: آت و اشغال های خیابان
|
283 |
+
---
|
284 |
+
reference: من به این روند اعتراض دارم
|
285 |
+
predicted: من به این لوند تراج دارم
|
286 |
+
---
|
287 |
+
reference: کرایه این مکان چند است
|
288 |
+
predicted: کرایه این مکان چند است
|
289 |
+
---
|
290 |
+
reference: ولی این فرصت این سهم جوانی اعطا نشده است
|
291 |
+
predicted: ولی این فرصت این سحم جوانی اتان نشده است
|
292 |
+
---
|
293 |
+
reference: متوجه فاجعهای محیطی میشوم
|
294 |
+
predicted: متوجه فاجایهای محیطی میشوم
|
295 |
+
---
|
296 |
+
reference: ترافیک شدیدیم بود و دیدن نور ماشینا و چراغا و لامپهای مراکز تجاری حس خوبی بهم میدادن
|
297 |
+
predicted: ترافیک شدید ی هم بودا دیدن نور ماشینا و چراغ لامپهای مراکز تجاری حس خولی بهم میدادن
|
298 |
+
---
|
299 |
+
reference: این مورد عمل ها مربوط به تخصص شما می شود
|
300 |
+
predicted: این مورد عملها مربوط به تخصص شما میشود
|
301 |
+
---
|
302 |
+
reference: انرژی خیلی کمی دارم
|
303 |
+
predicted: انرژی خیلی کمی دارم
|
304 |
+
---
|
305 |
+
reference: زیادی خوبی کردنم تهش داستانه
|
306 |
+
predicted: زیادی خوبی کردنم ترش داستانه
|
307 |
+
---
|
308 |
+
reference: بردهای که پادشاه شود
|
309 |
+
predicted: برده ای که پاده شاه شود
|
310 |
+
---
|
311 |
+
reference: یونسکو
|
312 |
+
predicted: یونسکو
|
313 |
+
---
|
314 |
+
reference: شما اخراج هستید
|
315 |
+
predicted: شما اخراج هستید
|
316 |
+
---
|
317 |
+
reference: من سفر کردن را دوست دارم
|
318 |
+
predicted: من سفر کردم را دوست دارم
|
319 |
+
```
|
320 |
+
|
321 |
+
## Evaluation
|
322 |
+
|
323 |
+
```python
|
324 |
+
!mkdir cer
|
325 |
+
!wget -O cer/cer.py https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese/raw/main/cer.py
|
326 |
+
|
327 |
+
wer = load_metric("wer")
|
328 |
+
cer = load_metric("./cer")
|
329 |
+
|
330 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
|
331 |
+
print("CER: {:2f}".format(100 * cer.compute(predictions=result["predicted"], references=result["sentence"])))
|
332 |
+
```
|
333 |
+
|
334 |
+
**Test Result**:
|
335 |
+
- WER: 32.09%
|
336 |
+
- CER: 8.23%
|
337 |
+
|
338 |
+
|
339 |
+
## Training
|
340 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
341 |
+
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
|
config.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"apply_spec_augment": true,
|
4 |
+
"architectures": [
|
5 |
+
"Wav2Vec2ForCTC"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"conv_bias": true,
|
10 |
+
"conv_dim": [
|
11 |
+
512,
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512
|
18 |
+
],
|
19 |
+
"conv_kernel": [
|
20 |
+
10,
|
21 |
+
3,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
2,
|
26 |
+
2
|
27 |
+
],
|
28 |
+
"conv_stride": [
|
29 |
+
5,
|
30 |
+
2,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2
|
36 |
+
],
|
37 |
+
"ctc_loss_reduction": "mean",
|
38 |
+
"ctc_zero_infinity": false,
|
39 |
+
"do_stable_layer_norm": true,
|
40 |
+
"eos_token_id": 2,
|
41 |
+
"feat_extract_activation": "gelu",
|
42 |
+
"feat_extract_dropout": 0.0,
|
43 |
+
"feat_extract_norm": "layer",
|
44 |
+
"feat_proj_dropout": 0.0,
|
45 |
+
"final_dropout": 0.0,
|
46 |
+
"gradient_checkpointing": true,
|
47 |
+
"hidden_act": "gelu",
|
48 |
+
"hidden_dropout": 0.1,
|
49 |
+
"hidden_size": 1024,
|
50 |
+
"initializer_range": 0.02,
|
51 |
+
"intermediate_size": 4096,
|
52 |
+
"layer_norm_eps": 1e-05,
|
53 |
+
"layerdrop": 0.1,
|
54 |
+
"mask_channel_length": 10,
|
55 |
+
"mask_channel_min_space": 1,
|
56 |
+
"mask_channel_other": 0.0,
|
57 |
+
"mask_channel_prob": 0.0,
|
58 |
+
"mask_channel_selection": "static",
|
59 |
+
"mask_feature_length": 10,
|
60 |
+
"mask_feature_prob": 0.0,
|
61 |
+
"mask_time_length": 10,
|
62 |
+
"mask_time_min_space": 1,
|
63 |
+
"mask_time_other": 0.0,
|
64 |
+
"mask_time_prob": 0.05,
|
65 |
+
"mask_time_selection": "static",
|
66 |
+
"model_type": "wav2vec2",
|
67 |
+
"num_attention_heads": 16,
|
68 |
+
"num_conv_pos_embedding_groups": 16,
|
69 |
+
"num_conv_pos_embeddings": 128,
|
70 |
+
"num_feat_extract_layers": 7,
|
71 |
+
"num_hidden_layers": 24,
|
72 |
+
"pad_token_id": 35,
|
73 |
+
"transformers_version": "4.5.0.dev0",
|
74 |
+
"vocab_size": 36
|
75 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9497f2383df9550e1f3310265224e7bc7e994c0ec844aac51fca5d8e9483b4
|
3 |
+
size 1262081431
|
sample1671.flac
ADDED
Binary file (169 kB). View file
|
|
sample687.flac
ADDED
Binary file (103 kB). View file
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
test_predicted.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbcb369f506a36d7e8b81d8831323d570a47695ce0b9cb55afbf5dff6f84f5ff
|
3 |
+
size 2351
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ت": 0, "گ": 1, "ب": 2, "ژ": 3, "ع": 4, "ذ": 5, "چ": 6, "ج": 7, "خ": 8, "ا": 9, "د": 10, "ن": 11, "ح": 12, "آ": 13, "غ": 14, "م": 15, "ص": 16, "ر": 17, "پ": 18, "ظ": 19, "ض": 20, "ه": 21, "ق": 23, "ک": 24, "ش": 25, "ط": 26, "ف": 27, "ی": 28, "ز": 29, "و": 30, "ل": 31, "س": 32, "ث": 33, "|": 22, "[UNK]": 34, "[PAD]": 35}
|