--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: Fine-tuned Whisper model for Legislative Yuan of Taiwan results: [] --- # Fine-tuned Whisper model for Legislative Yuan of Taiwan This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3057 - Wer: 122.1167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.0117 | 7.1429 | 1000 | 0.2368 | 113.6364 | | 0.0006 | 14.2857 | 2000 | 0.2757 | 118.7246 | | 0.0003 | 21.4286 | 3000 | 0.2859 | 120.2849 | | 0.0003 | 28.5714 | 4000 | 0.2963 | 119.9457 | | 0.0001 | 35.7143 | 5000 | 0.3057 | 122.1167 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1