--- license: apache-2.0 datasets: - google/wiki40b language: - zh base_model: - openai-community/gpt2 --- # Dorami A GPT-based pretrained model using the BERT Tokenizer ## Model description ### Training data [google/wiki40b](https://huggingface.co/datasets/google/wiki40b) ### Training code [dorami](https://github.com/6zeus/dorami.git) ## How to use ### 1. Download model from Hugging Face Hub to local ``` git lfs install git clone https://huggingface.co/lucky2me/Dorami ``` ### 2. Use the model downloaded above ```python import torch from transformers import AutoTokenizer,AutoModelForCausalLM model_path = "The path of the model downloaded above" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) text = "fill in any text you like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) predicted_token_id = torch.argmax(output.logits[:, -1, :], dim=-1) decoded_text = tokenizer.decode(predicted_token_id, skip_special_tokens=True) print("decoded text:",decoded_text) ```