---
language:
- 'no'
- nb
- nn
- se
inference: false
tags:
- BERT
- GPT-BERT
- NorBERT
- Norwegian
- encoder
- decoder
license: apache-2.0
---
# NorBERT 4 xsmall
The fourth generation of NorBERT models mainly improves their efficiency, but also performance and flexibility.
- **Made to encode long texts**: these models were trained on 16384-token-long texts, the sliding-window attention can then generalize to even longer sequences.
- **Fast and memory-efficient training and inference**: using FlashAttention2 with unpadding, the new generation of NorBERT models can process the long texts with ease.
- **Better performance**: better quality of training corpora and carefully tuned training settings leads to an improved performance over NorBERT 3.
- **BERT as well as GPT**: the models can flexibly function as both bidirectional encoders (BERT) or unidirectional decoders (GPT), which makes them very flexible to any downstream use.
- **Trained from scratch**: the model is trained from scratch on 600B tokens of Norwegian Bokmål, Nynorsk and Northern Sámi. We used the HPLT 2.0 corpus, FineWeb2 and Mímir Core.
- **Permissable license**: the checkpoints are distributed freely under Apache 2.0, anyone can use our models.
> [!TIP]
> We recommend installing Flash Attention 2 and `torch.compile`-ing your models to get the highest training and inference efficiency.
## All sizes of the NorBERT4 family:
- [NorBERT 4 xsmall (17M)](https://huggingface.co/ltg/norbert4-xsmall)
- [NorBERT 4 small (40M)](https://huggingface.co/ltg/norbert4-small)
- [NorBERT 4 base (149M)](https://huggingface.co/ltg/norbert4-base)
- [NorBERT 4 large (360M)](https://huggingface.co/ltg/norbert4-large)
- [NorBERT 4 xlarge (987M)](https://huggingface.co/ltg/norbert4-xlarge)
## Example usage (bidirectional encoding)
This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`.
```python
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
# Import model
tokenizer = AutoTokenizer.from_pretrained(
"ltg/norbert4-xsmall"
)
model = AutoModelForMaskedLM.from_pretrained(
"ltg/norbert4-xsmall",
trust_remote_code=True
)
# Tokenize text (with a mask token inside)
input_text = tokenizer(
f"Nå ønsker de seg en{tokenizer.mask_token} bolig.",
return_tensors="pt"
)
# Inference
with torch.inference_mode:
output_p = model(**input_text)
# Unmask the text
output_text = torch.where(
input_text.input_ids == tokenizer.mask_token_id,
output_p.logits.argmax(-1),
input_text.input_ids
)
# Decoding; should output: 'Nå ønsker de seg en ny bolig.'
print(tokenizer.decode(output_text[0].tolist()))
```
## Example usage (text generation)
NorBERT now also supports unidirectional text decoding, it can generate text like any other GPT model:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Import model
tokenizer = AutoTokenizer.from_pretrained(
"ltg/norbert4-xsmall"
)
model = AutoModelForCausalLM.from_pretrained(
"ltg/norbert4-xsmall",
trust_remote_code=True
)
# Define zero-shot translation prompt template
prompt = """Engelsk: {0}
Bokmål:"""
# Define tokens that should end the generation (any token with a newline)
eos_token_ids = [
token_id
for token_id in range(tokenizer.vocab_size)
if '\n' in tokenizer.decode([token_id])
]
# Generation function
@torch.inference_mode()
def generate(text):
text = prompt.format(text)
input_ids = tokenizer(text, return_tensors='pt').input_ids
prediction = model.generate(
input_ids,
max_new_tokens=64,
do_sample=False,
eos_token_id=eos_token_ids
)
return tokenizer.decode(prediction[0, input_ids.size(1):]).strip()
# Example usage
generate("I'm a model that can generate text!")
```
The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForCausalLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.
## Contact
David Samuel: `davisamu@uio.no`
## Cite us
```bibtex
@inproceedings{charpentier-samuel-2024-bert,
title = "{GPT} or {BERT}: why not both?",
author = "Charpentier, Lucas Georges Gabriel and
Samuel, David",
booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
month = nov,
year = "2024",
address = "Miami, FL, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.conll-babylm.24/",
pages = "262--283"
}
```
```bibtex
@inproceedings{samuel-etal-2023-norbench,
title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
author = "Samuel, David and
Kutuzov, Andrey and
Touileb, Samia and
Velldal, Erik and
{\O}vrelid, Lilja and
R{\o}nningstad, Egil and
Sigdel, Elina and
Palatkina, Anna",
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
month = may,
year = "2023",
address = "T{\'o}rshavn, Faroe Islands",
publisher = "University of Tartu Library",
url = "https://aclanthology.org/2023.nodalida-1.61",
pages = "618--633"
}
```