--- language: - 'no' - nb - nn - se inference: false tags: - BERT - GPT-BERT - NorBERT - Norwegian - encoder - decoder license: apache-2.0 --- # NorBERT 4 xsmall The fourth generation of NorBERT models mainly improves their efficiency, but also performance and flexibility. - **Made to encode long texts**: these models were trained on 16384-token-long texts, the sliding-window attention can then generalize to even longer sequences. - **Fast and memory-efficient training and inference**: using FlashAttention2 with unpadding, the new generation of NorBERT models can process the long texts with ease. - **Better performance**: better quality of training corpora and carefully tuned training settings leads to an improved performance over NorBERT 3. - **BERT as well as GPT**: the models can flexibly function as both bidirectional encoders (BERT) or unidirectional decoders (GPT), which makes them very flexible to any downstream use. - **Trained from scratch**: the model is trained from scratch on 600B tokens of Norwegian Bokmål, Nynorsk and Northern Sámi. We used the HPLT 2.0 corpus, FineWeb2 and Mímir Core. - **Permissable license**: the checkpoints are distributed freely under Apache 2.0, anyone can use our models. > [!TIP] > We recommend installing Flash Attention 2 and `torch.compile`-ing your models to get the highest training and inference efficiency. ## All sizes of the NorBERT4 family: - [NorBERT 4 xsmall (17M)](https://huggingface.co/ltg/norbert4-xsmall) - [NorBERT 4 small (40M)](https://huggingface.co/ltg/norbert4-small) - [NorBERT 4 base (149M)](https://huggingface.co/ltg/norbert4-base) - [NorBERT 4 large (360M)](https://huggingface.co/ltg/norbert4-large) - [NorBERT 4 xlarge (987M)](https://huggingface.co/ltg/norbert4-xlarge) ## Example usage (bidirectional encoding) This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`. ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM # Import model tokenizer = AutoTokenizer.from_pretrained( "ltg/norbert4-xsmall" ) model = AutoModelForMaskedLM.from_pretrained( "ltg/norbert4-xsmall", trust_remote_code=True ) # Tokenize text (with a mask token inside) input_text = tokenizer( f"Nå ønsker de seg en{tokenizer.mask_token} bolig.", return_tensors="pt" ) # Inference with torch.inference_mode: output_p = model(**input_text) # Unmask the text output_text = torch.where( input_text.input_ids == tokenizer.mask_token_id, output_p.logits.argmax(-1), input_text.input_ids ) # Decoding; should output: 'Nå ønsker de seg en ny bolig.' print(tokenizer.decode(output_text[0].tolist())) ``` ## Example usage (text generation) NorBERT now also supports unidirectional text decoding, it can generate text like any other GPT model: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Import model tokenizer = AutoTokenizer.from_pretrained( "ltg/norbert4-xsmall" ) model = AutoModelForCausalLM.from_pretrained( "ltg/norbert4-xsmall", trust_remote_code=True ) # Define zero-shot translation prompt template prompt = """Engelsk: {0} Bokmål:""" # Define tokens that should end the generation (any token with a newline) eos_token_ids = [ token_id for token_id in range(tokenizer.vocab_size) if '\n' in tokenizer.decode([token_id]) ] # Generation function @torch.inference_mode() def generate(text): text = prompt.format(text) input_ids = tokenizer(text, return_tensors='pt').input_ids prediction = model.generate( input_ids, max_new_tokens=64, do_sample=False, eos_token_id=eos_token_ids ) return tokenizer.decode(prediction[0, input_ids.size(1):]).strip() # Example usage generate("I'm a model that can generate text!") ``` The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForCausalLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`. ## Contact David Samuel: `davisamu@uio.no` ## Cite us ```bibtex @inproceedings{charpentier-samuel-2024-bert, title = "{GPT} or {BERT}: why not both?", author = "Charpentier, Lucas Georges Gabriel and Samuel, David", booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning", month = nov, year = "2024", address = "Miami, FL, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.conll-babylm.24/", pages = "262--283" } ``` ```bibtex @inproceedings{samuel-etal-2023-norbench, title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models", author = "Samuel, David and Kutuzov, Andrey and Touileb, Samia and Velldal, Erik and {\O}vrelid, Lilja and R{\o}nningstad, Egil and Sigdel, Elina and Palatkina, Anna", booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", month = may, year = "2023", address = "T{\'o}rshavn, Faroe Islands", publisher = "University of Tartu Library", url = "https://aclanthology.org/2023.nodalida-1.61", pages = "618--633" } ```