Upload folder using huggingface_hub
Browse files- __init__.py +0 -0
- config.json +49 -0
- configuration_gptbert.py +113 -0
- modeling_gptbert.py +1216 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +10 -0
__init__.py
ADDED
File without changes
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GptBertFoCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_gptbert.GptBertConfig",
|
7 |
+
"AutoModel": "modeling_gptbert.GptBertModel",
|
8 |
+
"AutoModelForCausalLM": "modeling_gptbert.GptBertForCausalLM",
|
9 |
+
"AutoModelForMaskedLM": "modeling_gptbert.GptBertForMaskedLM",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_gptbert.GptBertForSequenceClassification",
|
11 |
+
"AutoModelForTokenClassification": "modeling_gptbert.GptBertForTokenClassification",
|
12 |
+
"AutoModelForQuestionAnswering": "modeling_gptbert.GptBertForQuestionAnswering",
|
13 |
+
"AutoModelForMultipleChoice": "modeling_gptbert.GptBertForMultipleChoice"
|
14 |
+
},
|
15 |
+
"attention_dropout": 0.0,
|
16 |
+
"attention_output_dropout_p": 0.0,
|
17 |
+
"attention_inter_norm_affine": false,
|
18 |
+
"attention_inter_norm_eps": 1e-07,
|
19 |
+
"attention_pre_norm_affine": false,
|
20 |
+
"attention_pre_norm_eps": 1e-07,
|
21 |
+
"attention_probabilities_dropout_p": 0.0,
|
22 |
+
"classifier_post_norm_affine": false,
|
23 |
+
"classifier_post_norm_eps": 1e-07,
|
24 |
+
"classifier_pre_norm_affine": false,
|
25 |
+
"classifier_pre_norm_eps": 1e-07,
|
26 |
+
"d_qk": 64,
|
27 |
+
"d_v": 64,
|
28 |
+
"embedding_dropout_p": 0.1,
|
29 |
+
"feed_forward_dropout_p": 0.0,
|
30 |
+
"feed_forward_inter_norm_affine": false,
|
31 |
+
"feed_forward_inter_norm_eps": 1e-07,
|
32 |
+
"feed_forward_pre_norm_affine": false,
|
33 |
+
"feed_forward_pre_norm_eps": 1e-07,
|
34 |
+
"hidden_size": 640,
|
35 |
+
"intermediate_size": 1664,
|
36 |
+
"max_sequence_length": 16384,
|
37 |
+
"num_attention_heads": 10,
|
38 |
+
"num_kv_heads": 10,
|
39 |
+
"num_layers": 24,
|
40 |
+
"rope_theta": 160000,
|
41 |
+
"vocab_size": 51200,
|
42 |
+
"word_norm_affine": true,
|
43 |
+
"word_norm_eps": 1e-07,
|
44 |
+
"short_long_ratio": 4,
|
45 |
+
"window_length": 8192,
|
46 |
+
"is_decoder": false,
|
47 |
+
"not_flex": true,
|
48 |
+
"hidden_dropout_prob": 0.2
|
49 |
+
}
|
configuration_gptbert.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import json
|
4 |
+
from pathlib import Path
|
5 |
+
import copy
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
|
8 |
+
|
9 |
+
class GptBertConfig(PretrainedConfig):
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
config_file: Path | str | None = None,
|
14 |
+
**kwargs
|
15 |
+
):
|
16 |
+
super().__init__(**kwargs)
|
17 |
+
|
18 |
+
self.model: str
|
19 |
+
|
20 |
+
# General information
|
21 |
+
self.model = "base"
|
22 |
+
|
23 |
+
# Vocabulary
|
24 |
+
self.vocab_size = 16384
|
25 |
+
self.max_sequence_length = 512
|
26 |
+
|
27 |
+
# Model dimensions
|
28 |
+
self.hidden_size = 768
|
29 |
+
self.intermediate_size = 2048
|
30 |
+
self.num_attention_heads = 12
|
31 |
+
self.num_layers = 12
|
32 |
+
self.d_qk = 64
|
33 |
+
|
34 |
+
# Dropout probabilities
|
35 |
+
self.embedding_dropout_p = 0.1
|
36 |
+
self.attention_probabilities_dropout_p = 0.1
|
37 |
+
self.attention_output_dropout_p = 0.1
|
38 |
+
self.feed_forward_dropout_p = 0.1
|
39 |
+
self.attention_dropout = 0.1
|
40 |
+
self.hidden_dropout_prob = 0.2
|
41 |
+
|
42 |
+
# Position Emebedding
|
43 |
+
self.rope_theta = 160_000
|
44 |
+
|
45 |
+
# Norms
|
46 |
+
self.word_norm_eps = 1e-7
|
47 |
+
self.word_norm_affine = False
|
48 |
+
|
49 |
+
self.attention_pre_norm_eps = 1e-7
|
50 |
+
self.attention_pre_norm_affine = False
|
51 |
+
|
52 |
+
self.attention_inter_norm_eps = 1e-7
|
53 |
+
self.attention_inter_norm_affine = True
|
54 |
+
|
55 |
+
self.feed_forward_pre_norm_eps = 1e-7
|
56 |
+
self.feed_forward_pre_norm_affine = False
|
57 |
+
|
58 |
+
self.feed_forward_inter_norm_eps = 1e-7
|
59 |
+
self.feed_forward_inter_norm_affine = False
|
60 |
+
|
61 |
+
self.classifier_pre_norm_eps = 1e-7
|
62 |
+
self.classifier_pre_norm_affine = False
|
63 |
+
|
64 |
+
self.classifier_post_norm_eps = 1e-7
|
65 |
+
self.classifier_post_norm_affine = False
|
66 |
+
|
67 |
+
if config_file is not None:
|
68 |
+
if type(config_file) is str:
|
69 |
+
config_file = Path(config_file)
|
70 |
+
assert type(config_file) is not Path, "The config_file should either be a Path or str"
|
71 |
+
with config_file.open("r") as file:
|
72 |
+
config = json.load(file)
|
73 |
+
|
74 |
+
for attr, value in config.items():
|
75 |
+
if isinstance(value, str):
|
76 |
+
value = value.lower()
|
77 |
+
setattr(self, attr, value)
|
78 |
+
|
79 |
+
for attr, value in kwargs.items():
|
80 |
+
if isinstance(value, str):
|
81 |
+
value = value.lower()
|
82 |
+
setattr(self, attr, value)
|
83 |
+
|
84 |
+
def __repr__(self) -> str:
|
85 |
+
return str(self.to_json_string())
|
86 |
+
|
87 |
+
def to_dict(self) -> dict:
|
88 |
+
"""Serializes this instance to a Python dictionary."""
|
89 |
+
output: dict
|
90 |
+
|
91 |
+
output = copy.deepcopy(self.__dict__)
|
92 |
+
return output
|
93 |
+
|
94 |
+
def to_json_string(self) -> str:
|
95 |
+
"""Serializes this instance to a JSON string."""
|
96 |
+
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
97 |
+
|
98 |
+
def to_json_file(self, json_file_path: Path | str) -> None:
|
99 |
+
"""Save this instance to a json file."""
|
100 |
+
if isinstance(json_file_path, str):
|
101 |
+
json_file_path: Path = Path(json_file_path)
|
102 |
+
with json_file_path.open("w", encoding='utf-8') as writer:
|
103 |
+
writer.write(self.to_json_string())
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def create_base_config(cls, json_file_path: Path | str | None = None) -> GptBertConfig:
|
107 |
+
config: GptBertConfig
|
108 |
+
|
109 |
+
config = GptBertConfig()
|
110 |
+
if json_file_path is not None:
|
111 |
+
config.to_json_file(json_file_path)
|
112 |
+
|
113 |
+
return config
|
modeling_gptbert.py
ADDED
@@ -0,0 +1,1216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch import _softmax_backward_data as _softmax_backward_data
|
7 |
+
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
from .configuration_gptbert import GptBertConfig
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.activations import gelu_new
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
MaskedLMOutput,
|
15 |
+
MultipleChoiceModelOutput,
|
16 |
+
QuestionAnsweringModelOutput,
|
17 |
+
SequenceClassifierOutput,
|
18 |
+
TokenClassifierOutput,
|
19 |
+
BaseModelOutput,
|
20 |
+
CausalLMOutput
|
21 |
+
)
|
22 |
+
import math
|
23 |
+
from typing import TYPE_CHECKING, Optional, Union, Tuple, List
|
24 |
+
|
25 |
+
try:
|
26 |
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
27 |
+
except ImportError:
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
class ModelOutput:
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
logits: torch.Tensor | None = None,
|
36 |
+
loss: torch.Tensor | float | None = None,
|
37 |
+
perplexity: torch.Tensor | float | None = None,
|
38 |
+
accuracy: float | None = None,
|
39 |
+
z_loss: torch.Tensor | float | None = None,
|
40 |
+
**kwargs
|
41 |
+
):
|
42 |
+
self.logits: torch.Tensor | None
|
43 |
+
self.loss: torch.Tensor | float | None
|
44 |
+
self.perplexity: torch.Tensor | float | None
|
45 |
+
self.accuracy: float | None
|
46 |
+
self.z_loss: torch.Tensor | float | None
|
47 |
+
|
48 |
+
self.logits = logits
|
49 |
+
self.loss = loss
|
50 |
+
self.perplexity = perplexity
|
51 |
+
self.accuracy = accuracy
|
52 |
+
self.z_loss = z_loss
|
53 |
+
|
54 |
+
for attr, value in kwargs.items():
|
55 |
+
setattr(self, attr, value)
|
56 |
+
|
57 |
+
|
58 |
+
class CastedLinear(nn.Linear):
|
59 |
+
|
60 |
+
def __init__(self, in_features, out_features, bias):
|
61 |
+
super().__init__(in_features, out_features, bias=bias)
|
62 |
+
|
63 |
+
def reset_parameters(self) -> None:
|
64 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
65 |
+
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
return F.linear(x, self.weight.type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
69 |
+
|
70 |
+
|
71 |
+
class CastedLinearIn(nn.Linear):
|
72 |
+
|
73 |
+
def __init__(self, in_features, out_features, bias):
|
74 |
+
super().__init__(in_features, out_features, bias=bias)
|
75 |
+
self.scale = nn.Parameter(torch.ones(in_features))
|
76 |
+
|
77 |
+
def reset_parameters(self) -> None:
|
78 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
79 |
+
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
83 |
+
|
84 |
+
|
85 |
+
class CastedLinearOut(nn.Linear):
|
86 |
+
|
87 |
+
def __init__(self, in_features, out_features, bias):
|
88 |
+
super().__init__(in_features, out_features, bias=bias)
|
89 |
+
self.scale = nn.Parameter(torch.ones(out_features))
|
90 |
+
|
91 |
+
def reset_parameters(self) -> None:
|
92 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
93 |
+
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
return F.linear(x, (self.scale.unsqueeze(1) * self.weight).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
97 |
+
|
98 |
+
|
99 |
+
class MultiCastedLinearOrtho(nn.Module):
|
100 |
+
|
101 |
+
def __init__(self, in_features, out_features, bias):
|
102 |
+
super().__init__()
|
103 |
+
self.in_features = in_features
|
104 |
+
self.out_features = out_features
|
105 |
+
|
106 |
+
self.weights = nn.ParameterList()
|
107 |
+
for out_feature in out_features:
|
108 |
+
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
109 |
+
|
110 |
+
if bias:
|
111 |
+
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
112 |
+
else:
|
113 |
+
self.bias = self.register_parameter("bias", None)
|
114 |
+
|
115 |
+
self.reset_parameters()
|
116 |
+
|
117 |
+
def reset_parameters(self) -> None:
|
118 |
+
for i, weight in enumerate(self.weights):
|
119 |
+
std: float = math.sqrt(2.0 / (self.in_features + self.out_features[i]))
|
120 |
+
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
return F.linear(x, torch.cat([weight for weight in self.weights], dim=0).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
124 |
+
|
125 |
+
|
126 |
+
class MultiCastedLinearOrthoIn(nn.Module):
|
127 |
+
|
128 |
+
def __init__(self, in_features, out_features, bias):
|
129 |
+
super().__init__()
|
130 |
+
self.in_features = in_features
|
131 |
+
self.out_features = out_features
|
132 |
+
|
133 |
+
self.weights = nn.ParameterList()
|
134 |
+
for out_feature in out_features:
|
135 |
+
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
136 |
+
|
137 |
+
if bias:
|
138 |
+
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
139 |
+
else:
|
140 |
+
self.bias = self.register_parameter("bias", None)
|
141 |
+
|
142 |
+
self.scale = nn.Parameter(torch.ones(in_features))
|
143 |
+
|
144 |
+
self.reset_parameters()
|
145 |
+
|
146 |
+
def reset_parameters(self) -> None:
|
147 |
+
for weight in self.weights:
|
148 |
+
std = 0.5 * (self.in_features ** -0.5)
|
149 |
+
bound = (3 ** 0.5) * std
|
150 |
+
with torch.no_grad():
|
151 |
+
weight.uniform_(-bound, bound)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
155 |
+
|
156 |
+
|
157 |
+
class MultiCastedLinearOrthoOut(nn.Module):
|
158 |
+
|
159 |
+
def __init__(self, in_features, out_features, bias):
|
160 |
+
super().__init__()
|
161 |
+
self.in_features = in_features
|
162 |
+
self.out_features = out_features
|
163 |
+
|
164 |
+
self.weights = nn.ParameterList()
|
165 |
+
for out_feature in out_features:
|
166 |
+
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
167 |
+
|
168 |
+
if bias:
|
169 |
+
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
170 |
+
else:
|
171 |
+
self.bias = self.register_parameter("bias", None)
|
172 |
+
|
173 |
+
self.scale = nn.Parameter(torch.ones(sum(out_features)))
|
174 |
+
|
175 |
+
self.reset_parameters()
|
176 |
+
|
177 |
+
def reset_parameters(self) -> None:
|
178 |
+
for weight in self.weights:
|
179 |
+
std = 0.5 * (self.in_features ** -0.5)
|
180 |
+
bound = (3 ** 0.5) * std
|
181 |
+
with torch.no_grad():
|
182 |
+
weight.uniform_(-bound, bound)
|
183 |
+
|
184 |
+
def forward(self, x):
|
185 |
+
return F.linear(x, (self.scale.unsqueeze(1) * torch.cat([weight for weight in self.weights], dim=0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
186 |
+
|
187 |
+
|
188 |
+
class GeGLU(nn.Module):
|
189 |
+
def forward(self, x):
|
190 |
+
x, gate = x.chunk(2, dim=-1)
|
191 |
+
x = x * gelu_new(gate)
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class MaskedSoftmax(torch.autograd.Function):
|
196 |
+
@staticmethod
|
197 |
+
def forward(ctx, x: torch.Tensor, mask: torch.BoolTensor, dim: int) -> torch.Tensor:
|
198 |
+
ctx.dim: int
|
199 |
+
|
200 |
+
ctx.dim = dim
|
201 |
+
x.masked_fill_(mask, float('-inf'))
|
202 |
+
x = torch.softmax(x, ctx.dim)
|
203 |
+
x.masked_fill_(mask, 0.0)
|
204 |
+
ctx.save_for_backward(x)
|
205 |
+
return x
|
206 |
+
|
207 |
+
@staticmethod
|
208 |
+
def backward(ctx, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]:
|
209 |
+
output: torch.Tensor
|
210 |
+
|
211 |
+
output, = ctx.saved_tensors
|
212 |
+
inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, ctx.dim, output.dtype)
|
213 |
+
return inputGrad, None, None
|
214 |
+
|
215 |
+
|
216 |
+
class Encoder(nn.Module):
|
217 |
+
|
218 |
+
def __init__(self, config) -> None:
|
219 |
+
super().__init__()
|
220 |
+
|
221 |
+
self.layers: nn.ModuleList[Layer]
|
222 |
+
|
223 |
+
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
224 |
+
|
225 |
+
for i, layer in enumerate(self.layers):
|
226 |
+
for weight in layer.mlp.up_proj.weights:
|
227 |
+
weight.data *= math.sqrt(1.0 / (2.0 * (i + 1)))
|
228 |
+
layer.mlp.down_proj.weight.data *= math.sqrt(1.0 / (2.0 * (i + 1)))
|
229 |
+
|
230 |
+
self.short_long_ratio = config.short_long_ratio
|
231 |
+
|
232 |
+
def set_window_length(self, config) -> None:
|
233 |
+
for i, layer in enumerate(self.layers):
|
234 |
+
if (i+1) % self.short_long_ratio == 0:
|
235 |
+
layer.set_window_length(config.window_length, config.not_flex)
|
236 |
+
else:
|
237 |
+
layer.set_window_length(256, config.not_flex)
|
238 |
+
|
239 |
+
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor:
|
240 |
+
hidden_layer: List[torch.Tensor]
|
241 |
+
attention_probs: List[torch.Tensor]
|
242 |
+
|
243 |
+
hidden_states = []
|
244 |
+
attention_probs = []
|
245 |
+
v1 = None
|
246 |
+
|
247 |
+
for layer in self.layers:
|
248 |
+
hidden_layer, v1, attention_p = layer(hidden_layer, embeddings, v1, mask)
|
249 |
+
hidden_states.append(hidden_layer)
|
250 |
+
attention_probs.append(attention_p)
|
251 |
+
|
252 |
+
return hidden_states, attention_probs
|
253 |
+
|
254 |
+
|
255 |
+
class Layer(nn.Module):
|
256 |
+
|
257 |
+
def __init__(self, config, layer_idx: int) -> None:
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
self.attention: SelfAttention
|
261 |
+
self.mlp: FeedForward
|
262 |
+
|
263 |
+
self.attention = SelfAttention(config, layer_idx)
|
264 |
+
self.mlp = FeedForward(config)
|
265 |
+
self.lambdas = nn.Parameter(torch.tensor([0., 0., 1., 0., 1., 0.]))
|
266 |
+
|
267 |
+
def set_window_length(self, window_length: int, not_flex: bool) -> None:
|
268 |
+
self.attention.set_window_length(window_length, not_flex)
|
269 |
+
|
270 |
+
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, v1: torch.Tensor | None, mask: torch.Tensor | None = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
271 |
+
output: torch.Tensor
|
272 |
+
attention_p: torch.Tensor
|
273 |
+
|
274 |
+
attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
|
275 |
+
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
276 |
+
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
277 |
+
|
278 |
+
attention_output, v1, attention_p = self.attention(attention_output, qk_layer, v1, mask)
|
279 |
+
mlp_layer = mlp_layer + attention_output
|
280 |
+
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
281 |
+
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
282 |
+
|
283 |
+
return output, v1, attention_p
|
284 |
+
|
285 |
+
|
286 |
+
class Embedding(nn.Module):
|
287 |
+
|
288 |
+
def __init__(self, config) -> None:
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
assert hasattr(config, "vocab_size"), "The config must have a vocab_size attribute!"
|
292 |
+
assert hasattr(config, "hidden_size"), "The config must have a hidden_size attribute!"
|
293 |
+
assert hasattr(config, "embedding_dropout_p"), "The model must have a embedding_dropout_p attribute!"
|
294 |
+
|
295 |
+
self.word_embedding: nn.Embedding
|
296 |
+
self.word_norm: nn.LayerNorm
|
297 |
+
self.dropout: nn.Dropout
|
298 |
+
|
299 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
300 |
+
self.word_norm = nn.LayerNorm(config.hidden_size, eps=config.word_norm_eps, elementwise_affine=False, bias=False)
|
301 |
+
self.word_scale = nn.Parameter(torch.zeros(config.hidden_size))
|
302 |
+
|
303 |
+
self.dropout = nn.Dropout(config.embedding_dropout_p)
|
304 |
+
|
305 |
+
self.initialize(config.hidden_size, config.vocab_size)
|
306 |
+
|
307 |
+
@torch.no_grad()
|
308 |
+
def initialize(self, hidden_size: int, vocab_size: int) -> None:
|
309 |
+
std: float
|
310 |
+
|
311 |
+
std = math.sqrt(2.0 / (hidden_size + vocab_size))
|
312 |
+
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
313 |
+
|
314 |
+
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
315 |
+
word_embedding: torch.Tensor
|
316 |
+
|
317 |
+
word_embedding = self.word_embedding(input_ids)
|
318 |
+
word_embedding = self.word_norm(word_embedding)
|
319 |
+
word_embedding = (word_embedding * (self.word_scale + 1.0).unsqueeze(0).unsqueeze(0))
|
320 |
+
|
321 |
+
return self.dropout(word_embedding)
|
322 |
+
|
323 |
+
|
324 |
+
class MaskClassifier(nn.Module):
|
325 |
+
|
326 |
+
def __init__(self, config, embedding_weights: nn.Parameter) -> None:
|
327 |
+
super().__init__()
|
328 |
+
|
329 |
+
self.projection: CastedLinear
|
330 |
+
self.emb2vocab: CastedLinear
|
331 |
+
self.pre_norm: nn.LayerNorm
|
332 |
+
self.post_norm: nn.LayerNorm
|
333 |
+
|
334 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
335 |
+
self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
|
336 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
337 |
+
self.emb2vocab = CastedLinearIn(config.hidden_size, config.vocab_size, bias=True)
|
338 |
+
|
339 |
+
self.initialize(config.hidden_size, config.vocab_size, embedding_weights)
|
340 |
+
|
341 |
+
@torch.no_grad()
|
342 |
+
def initialize(self, hidden_size: int, vocab_size: int, embedding_weights: nn.Parameter) -> None:
|
343 |
+
proj_std: float = math.sqrt(2.0 / (hidden_size + 4*hidden_size))
|
344 |
+
|
345 |
+
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
346 |
+
self.emb2vocab.weight = embedding_weights
|
347 |
+
self.emb2vocab.bias.zero_()
|
348 |
+
|
349 |
+
def project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
350 |
+
projection: torch.Tensor
|
351 |
+
|
352 |
+
projection = self.projection(hidden_layer)
|
353 |
+
projection = gelu_new(projection)
|
354 |
+
projection = self.post_norm(projection)
|
355 |
+
|
356 |
+
return projection
|
357 |
+
|
358 |
+
def calculate_output(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
359 |
+
return self.emb2vocab(hidden_layer)
|
360 |
+
|
361 |
+
def forward(self, hidden_layer: torch.Tensor, labels: torch.Tensor | None = None) -> torch.Tensor:
|
362 |
+
output: torch.Tensor
|
363 |
+
|
364 |
+
if labels is not None:
|
365 |
+
hidden_layer = torch.index_select(hidden_layer.flatten(0, 1), 0, torch.nonzero(labels.flatten() != -100).squeeze())
|
366 |
+
|
367 |
+
hidden_layer = self.pre_norm(hidden_layer)
|
368 |
+
hidden_layer = self.project(hidden_layer)
|
369 |
+
output = self.calculate_output(hidden_layer)
|
370 |
+
|
371 |
+
return output
|
372 |
+
|
373 |
+
|
374 |
+
class SelfAttention(nn.Module):
|
375 |
+
|
376 |
+
def __init__(self, config, layer_idx) -> None:
|
377 |
+
super().__init__()
|
378 |
+
self.d_qk = config.d_qk
|
379 |
+
self.d_v = config.d_v
|
380 |
+
self.num_attention_heads = config.num_attention_heads
|
381 |
+
self.num_kv_heads = config.num_kv_heads
|
382 |
+
self.hidden_size = config.hidden_size
|
383 |
+
|
384 |
+
self.q_out_dim = self.d_qk * self.num_attention_heads
|
385 |
+
self.k_out_dim = self.d_qk * self.num_kv_heads
|
386 |
+
self.v_out_dim = self.d_v * self.num_kv_heads
|
387 |
+
|
388 |
+
self.qk_proj = MultiCastedLinearOrthoIn(self.hidden_size, [self.q_out_dim, self.k_out_dim], bias=False)
|
389 |
+
self.v_proj = CastedLinearIn(self.hidden_size, self.v_out_dim, bias=False)
|
390 |
+
self.out_proj = CastedLinearIn(self.d_v*self.num_attention_heads, self.hidden_size, bias=False)
|
391 |
+
|
392 |
+
self.pre_v_norm = nn.LayerNorm(config.hidden_size, eps=config.attention_pre_norm_eps, elementwise_affine=config.attention_pre_norm_affine)
|
393 |
+
self.pre_qk_norm = nn.LayerNorm(config.hidden_size, eps=config.attention_pre_norm_eps, elementwise_affine=config.attention_pre_norm_affine)
|
394 |
+
self.inter_norm = nn.LayerNorm(self.d_v * self.num_attention_heads, eps=config.attention_inter_norm_eps, elementwise_affine=config.attention_inter_norm_affine)
|
395 |
+
self.q_norm = nn.LayerNorm(config.d_qk, eps=config.attention_pre_norm_eps, elementwise_affine=False, bias=False)
|
396 |
+
self.k_norm = nn.LayerNorm(config.d_qk, eps=config.attention_pre_norm_eps, elementwise_affine=False, bias=False)
|
397 |
+
self.k_scale = nn.Parameter(torch.ones(self.num_kv_heads, config.d_qk))
|
398 |
+
self.q_scale = nn.Parameter(torch.ones(self.num_attention_heads, config.d_qk))
|
399 |
+
|
400 |
+
self.dropout = nn.Dropout(config.attention_output_dropout_p)
|
401 |
+
|
402 |
+
theta = 160_000 if (layer_idx + 1) % config.short_long_ratio == 0 else 10_000
|
403 |
+
|
404 |
+
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
405 |
+
self.scale: float = 1.0 / math.sqrt(self.d_qk)
|
406 |
+
|
407 |
+
self.dropout = nn.Dropout(config.attention_dropout if hasattr(config, "attention_dropout") else 0.0)
|
408 |
+
|
409 |
+
self.lambdas = nn.Parameter(torch.tensor([0.5]))
|
410 |
+
|
411 |
+
self.initialize()
|
412 |
+
|
413 |
+
self.sequence_length = config.max_sequence_length
|
414 |
+
self.is_causal = config.is_decoder
|
415 |
+
self.not_flex = config.not_flex
|
416 |
+
|
417 |
+
@torch.no_grad()
|
418 |
+
def initialize(self) -> None:
|
419 |
+
std: float = math.sqrt(2.0 / (self.hidden_size + 4*self.hidden_size))
|
420 |
+
for weight in self.qk_proj.weights:
|
421 |
+
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
422 |
+
nn.init.trunc_normal_(self.v_proj.weight, mean=0.0, std=std, a=2*std, b=2*std)
|
423 |
+
self.out_proj.weight.data.zero_()
|
424 |
+
|
425 |
+
def set_window_length(self, window_length: int, not_flex: bool) -> None:
|
426 |
+
self.window_length: int = window_length
|
427 |
+
if not not_flex:
|
428 |
+
self.block_mask = self.create_block_mask(window_length)
|
429 |
+
|
430 |
+
def causal_mask_mode(self, window_length, b, _, q_idx, kv_idx):
|
431 |
+
return (q_idx >= kv_idx) & ((q_idx - kv_idx) < window_length)
|
432 |
+
|
433 |
+
def bidirectional_mask_mode(self, window_length, b, _, q_idx, kv_idx):
|
434 |
+
return ((q_idx - kv_idx) < window_length) & ((kv_idx - q_idx) < window_length)
|
435 |
+
|
436 |
+
def create_block_mask(self, window_length: int) -> torch.Tensor:
|
437 |
+
if self.is_causal:
|
438 |
+
return create_block_mask(
|
439 |
+
partial(self.causal_mask_mode, self.window_length),
|
440 |
+
1, 1, self.sequence_length, self.sequence_length, device=self.k_scale.device
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
return create_block_mask(
|
444 |
+
partial(self.bidirectional_mask_mode, self.window_length),
|
445 |
+
1, 1, self.sequence_length, self.sequence_length, device=self.k_scale.device
|
446 |
+
)
|
447 |
+
|
448 |
+
def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
449 |
+
attention_scores: torch.Tensor
|
450 |
+
attention_probabilities: torch.Tensor
|
451 |
+
batch_size: int
|
452 |
+
query_length: int
|
453 |
+
key_length: int
|
454 |
+
|
455 |
+
batch_size, _, query_length, _ = query.size()
|
456 |
+
_, _, key_length, _ = key.size()
|
457 |
+
|
458 |
+
if self.is_causal:
|
459 |
+
window_mask = ~torch.ones(query_length, key_length, dtype=torch.bool, device=self.k_scale.device).tril().triu(diagonal=-self.window_length).view(1, 1, query_length, key_length)
|
460 |
+
else:
|
461 |
+
window_mask = ~torch.ones(query_length, key_length, dtype=torch.bool, device=self.k_scale.device).tril(diagonal=self.window_length).triu(diagonal=-self.window_length).view(1, 1, query_length, key_length)
|
462 |
+
|
463 |
+
if padding_mask is not None:
|
464 |
+
attention_mask = padding_mask | window_mask
|
465 |
+
else:
|
466 |
+
attention_mask = window_mask
|
467 |
+
|
468 |
+
attention_scores = torch.bmm(query.flatten(0, 1), key.transpose(-1, -2).flatten(0, 1)) * self.scale # shape: [B*H, T, T]
|
469 |
+
attention_scores = attention_scores.view(batch_size, self.num_attention_heads, query_length, key_length)
|
470 |
+
|
471 |
+
attention_probabilities = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
|
472 |
+
attention_probabilities = self.dropout(attention_probabilities)
|
473 |
+
|
474 |
+
value = torch.bmm(attention_probabilities.flatten(0, 1), value.flatten(0, 1))
|
475 |
+
value = value.view(batch_size, self.num_attention_heads, query_length, self.d_v)
|
476 |
+
|
477 |
+
return value, attention_probabilities.detach()
|
478 |
+
|
479 |
+
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, mask: torch.Tensor | None = None, doc_ids: torch.Tensor | None = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
480 |
+
hidden_layer = self.pre_v_norm(hidden_layer)
|
481 |
+
qk_layer = self.pre_qk_norm(qk_layer)
|
482 |
+
|
483 |
+
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
484 |
+
value = self.v_proj(hidden_layer)
|
485 |
+
|
486 |
+
query_length: int = hidden_layer.size(0)
|
487 |
+
key_length: int = hidden_layer.size(0)
|
488 |
+
batch_size: int = hidden_layer.size(1)
|
489 |
+
|
490 |
+
query = query.reshape(query_length, batch_size, self.num_attention_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
491 |
+
key = key.reshape(key_length, batch_size, self.num_kv_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
492 |
+
value = value.reshape(key_length, batch_size, self.num_kv_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
493 |
+
|
494 |
+
query, key = ((self.q_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.q_norm(query.float())).type_as(query), ((self.k_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.k_norm(key.float())).type_as(key)
|
495 |
+
|
496 |
+
if v1 is None:
|
497 |
+
v1 = value
|
498 |
+
value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1
|
499 |
+
|
500 |
+
query = self.rope_embedding(query)
|
501 |
+
key = self.rope_embedding(key)
|
502 |
+
|
503 |
+
if self.not_flex:
|
504 |
+
output, attention_probabilities = self.attention_operation(query, key, value, mask)
|
505 |
+
else:
|
506 |
+
def document_score_mod(score, b, _, q_idx, kv_idx):
|
507 |
+
return torch.where(doc_ids[q_idx] == doc_ids[kv_idx], score, -float("inf"))
|
508 |
+
|
509 |
+
if self.is_causal:
|
510 |
+
block_mask = create_block_mask(
|
511 |
+
partial(self.causal_mask_mode, self.window_length),
|
512 |
+
1, 1, query_length, key_length, device=self.k_scale.device
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
block_mask = create_block_mask(
|
516 |
+
partial(self.bidirectional_mask_mode, self.window_length),
|
517 |
+
1, 1, query_length, key_length, device=self.k_scale.device
|
518 |
+
)
|
519 |
+
|
520 |
+
output = flex_attention(
|
521 |
+
query, key, value, block_mask=block_mask, enable_gqa=True
|
522 |
+
)
|
523 |
+
attention_probabilities = None
|
524 |
+
|
525 |
+
output = output.permute(2, 0, 1, 3).flatten(2, 3) # shape: [T, B, H*D]
|
526 |
+
output = self.inter_norm(output)
|
527 |
+
output = self.out_proj(output)
|
528 |
+
|
529 |
+
return self.dropout(output), v1, attention_probabilities
|
530 |
+
|
531 |
+
|
532 |
+
class FeedForward(nn.Module):
|
533 |
+
|
534 |
+
def __init__(self, config) -> None:
|
535 |
+
super().__init__()
|
536 |
+
|
537 |
+
self.up_proj: CastedLinear
|
538 |
+
self.down_proj: CastedLinear
|
539 |
+
self.pre_norm: nn.LayerNorm
|
540 |
+
self.inter_norm: nn.LayerNorm
|
541 |
+
self.activation: GeGLU
|
542 |
+
self.dropout: nn.Dropout
|
543 |
+
|
544 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.feed_forward_pre_norm_eps, elementwise_affine=config.feed_forward_pre_norm_affine)
|
545 |
+
self.up_proj = MultiCastedLinearOrthoIn(config.hidden_size, [config.intermediate_size, config.intermediate_size], bias=False)
|
546 |
+
self.activation = GeGLU()
|
547 |
+
self.inter_norm = nn.LayerNorm(config.intermediate_size, eps=config.feed_forward_inter_norm_eps, elementwise_affine=config.feed_forward_inter_norm_affine)
|
548 |
+
self.down_proj = CastedLinearIn(config.intermediate_size, config.hidden_size, bias=False)
|
549 |
+
self.dropout = nn.Dropout(config.feed_forward_dropout_p)
|
550 |
+
|
551 |
+
self.initialize(config.hidden_size)
|
552 |
+
|
553 |
+
@torch.no_grad()
|
554 |
+
def initialize(self, hidden_size: int) -> None:
|
555 |
+
std: float = math.sqrt(2.0 / (5*hidden_size))
|
556 |
+
|
557 |
+
for weight in self.up_proj.weights:
|
558 |
+
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
559 |
+
self.down_proj.weight.data.zero_()
|
560 |
+
|
561 |
+
def up_project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
562 |
+
hidden_layer = self.pre_norm(hidden_layer)
|
563 |
+
return self.up_proj(hidden_layer)
|
564 |
+
|
565 |
+
def activate(self, projection: torch.Tensor) -> torch.Tensor:
|
566 |
+
activated_projection: torch.Tensor
|
567 |
+
|
568 |
+
activated_projection = self.activation(projection)
|
569 |
+
activated_projection = self.inter_norm(activated_projection.float()).type_as(projection)
|
570 |
+
|
571 |
+
return activated_projection
|
572 |
+
|
573 |
+
def down_project(self, activated_projection: torch.Tensor) -> torch.Tensor:
|
574 |
+
output: torch.Tensor
|
575 |
+
|
576 |
+
output = self.down_proj(activated_projection)
|
577 |
+
|
578 |
+
return self.dropout(output)
|
579 |
+
|
580 |
+
def forward(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
581 |
+
output: torch.Tensor
|
582 |
+
|
583 |
+
output = self.up_project(hidden_layer)
|
584 |
+
output = self.activate(output)
|
585 |
+
output = self.down_project(output)
|
586 |
+
|
587 |
+
return output
|
588 |
+
|
589 |
+
|
590 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
591 |
+
|
592 |
+
def __init__(self, config, theta: int) -> None:
|
593 |
+
super().__init__()
|
594 |
+
|
595 |
+
assert hasattr(config, "d_qk"), "The config must have a d_qk attribute!"
|
596 |
+
assert hasattr(config, "max_sequence_length"), "The config must have a max_sequence_length attribute!"
|
597 |
+
|
598 |
+
self.inv_freq: torch.Tensor
|
599 |
+
self.cos_matrix: torch.Tensor
|
600 |
+
self.sin_matrix: torch.Tensor
|
601 |
+
head_size: int
|
602 |
+
max_seq_len: int
|
603 |
+
inv_freq: torch.Tensor
|
604 |
+
pos: torch.Tensor
|
605 |
+
embedding: torch.Tensor
|
606 |
+
|
607 |
+
head_size = config.d_qk
|
608 |
+
assert head_size % 2 == 0
|
609 |
+
max_seq_len = config.max_sequence_length
|
610 |
+
|
611 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, head_size, 2, dtype=torch.float32) / head_size))
|
612 |
+
pos = torch.arange(max_seq_len, dtype=torch.float32)
|
613 |
+
embedding = torch.einsum('n, d -> nd', pos, inv_freq)
|
614 |
+
embedding = torch.cat([embedding, embedding], dim=-1).unsqueeze(0)
|
615 |
+
self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
|
616 |
+
self.register_buffer("sin_matrix", embedding.sin(), persistent=False)
|
617 |
+
|
618 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
619 |
+
seq_len: int
|
620 |
+
cos_matrix: torch.Tensor
|
621 |
+
sin_matrix: torch.Tensor
|
622 |
+
x_rotate_half: torch.Tensor
|
623 |
+
out: torch.Tensor
|
624 |
+
|
625 |
+
hidden_layer = x.float()
|
626 |
+
|
627 |
+
seq_len = x.shape[2]
|
628 |
+
|
629 |
+
cos_matrix = self.cos_matrix[:, None, :seq_len, :]
|
630 |
+
sin_matrix = self.sin_matrix[:, None, :seq_len, :]
|
631 |
+
|
632 |
+
x_rotate_half = torch.cat(
|
633 |
+
[
|
634 |
+
-hidden_layer[:, :, :, x.size(-1) // 2:],
|
635 |
+
hidden_layer[:, :, :, :x.size(-1) // 2]
|
636 |
+
],
|
637 |
+
dim=-1
|
638 |
+
)
|
639 |
+
|
640 |
+
out = hidden_layer * cos_matrix + x_rotate_half * sin_matrix
|
641 |
+
return out.type_as(x)
|
642 |
+
|
643 |
+
|
644 |
+
#
|
645 |
+
# HuggingFace wrappers
|
646 |
+
#
|
647 |
+
|
648 |
+
class GptBertPreTrainedModel(PreTrainedModel):
|
649 |
+
config_class = GptBertConfig
|
650 |
+
supports_gradient_checkpointing = False
|
651 |
+
|
652 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
653 |
+
raise NotImplementedError("Gradient checkpointing is not supported by this model")
|
654 |
+
|
655 |
+
def _init_weights(self, module):
|
656 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
657 |
+
|
658 |
+
if isinstance(module, nn.Linear):
|
659 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
660 |
+
if module.bias is not None:
|
661 |
+
module.bias.data.zero_()
|
662 |
+
elif isinstance(module, nn.Embedding):
|
663 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
664 |
+
elif isinstance(module, nn.LayerNorm):
|
665 |
+
module.bias.data.zero_()
|
666 |
+
module.weight.data.fill_(1.0)
|
667 |
+
|
668 |
+
|
669 |
+
class GptBertModel(GptBertPreTrainedModel):
|
670 |
+
|
671 |
+
def __init__(self, config, add_mlm_layer=False, **kwargs):
|
672 |
+
super().__init__(config, **kwargs)
|
673 |
+
self.config = config
|
674 |
+
self.hidden_size = config.hidden_size
|
675 |
+
|
676 |
+
self.embedding = Embedding(config)
|
677 |
+
self.encoder = Encoder(config)
|
678 |
+
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
|
679 |
+
self.set_window_length(config)
|
680 |
+
|
681 |
+
def set_window_length(self, config) -> None:
|
682 |
+
self.encoder.set_window_length(config)
|
683 |
+
|
684 |
+
def get_input_embeddings(self):
|
685 |
+
return self.embedding.word_embedding
|
686 |
+
|
687 |
+
def set_input_embeddings(self, value):
|
688 |
+
self.embedding.word_embedding = value
|
689 |
+
|
690 |
+
def get_contextualized_embeddings(
|
691 |
+
self,
|
692 |
+
input_ids: Optional[torch.Tensor] = None,
|
693 |
+
attention_mask: Optional[torch.Tensor] = None
|
694 |
+
) -> List[torch.Tensor]:
|
695 |
+
if input_ids is not None:
|
696 |
+
input_shape = input_ids.size()
|
697 |
+
else:
|
698 |
+
raise ValueError("You have to specify input_ids")
|
699 |
+
|
700 |
+
batch_size, seq_length = input_shape
|
701 |
+
device = input_ids.device
|
702 |
+
|
703 |
+
# if attention_mask is None:
|
704 |
+
# attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
|
705 |
+
if attention_mask is not None:
|
706 |
+
attention_mask = ~attention_mask.bool()
|
707 |
+
|
708 |
+
if len(attention_mask.size()) == 2:
|
709 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
710 |
+
elif len(attention_mask.size()) == 3:
|
711 |
+
attention_mask = attention_mask.unsqueeze(1)
|
712 |
+
|
713 |
+
if self.config.is_decoder:
|
714 |
+
attention_mask = attention_mask | torch.triu(torch.ones(seq_length, seq_length, dtype=torch.bool, device=device), 1).unsqueeze(0).unsqueeze(0)
|
715 |
+
|
716 |
+
static_embeddings = self.embedding(input_ids.t())
|
717 |
+
contextualized_embeddings, attention_probs = self.encoder(static_embeddings, static_embeddings, attention_mask)
|
718 |
+
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
|
719 |
+
last_layer = contextualized_embeddings[-1]
|
720 |
+
contextualized_embeddings = [contextualized_embeddings[0]] + [
|
721 |
+
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
|
722 |
+
for i in range(1, len(contextualized_embeddings))
|
723 |
+
]
|
724 |
+
return last_layer, contextualized_embeddings, attention_probs
|
725 |
+
|
726 |
+
def forward(
|
727 |
+
self,
|
728 |
+
input_ids: Optional[torch.Tensor] = None,
|
729 |
+
attention_mask: Optional[torch.Tensor] = None,
|
730 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
731 |
+
position_ids: Optional[torch.Tensor] = None,
|
732 |
+
output_hidden_states: Optional[bool] = None,
|
733 |
+
output_attentions: Optional[bool] = None,
|
734 |
+
return_dict: Optional[bool] = None,
|
735 |
+
**kwargs
|
736 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
737 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
738 |
+
|
739 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
740 |
+
|
741 |
+
if not return_dict:
|
742 |
+
return (
|
743 |
+
sequence_output,
|
744 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
745 |
+
*([attention_probs] if output_attentions else [])
|
746 |
+
)
|
747 |
+
|
748 |
+
return BaseModelOutput(
|
749 |
+
last_hidden_state=sequence_output,
|
750 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
751 |
+
attentions=attention_probs if output_attentions else None
|
752 |
+
)
|
753 |
+
|
754 |
+
|
755 |
+
class GptBertForMaskedLM(GptBertModel):
|
756 |
+
_keys_to_ignore_on_load_unexpected = ["head"]
|
757 |
+
|
758 |
+
def __init__(self, config, **kwargs):
|
759 |
+
super().__init__(config, add_mlm_layer=True, **kwargs)
|
760 |
+
|
761 |
+
def get_output_embeddings(self):
|
762 |
+
return self.classifier.emb2vocab.weight
|
763 |
+
|
764 |
+
def set_output_embeddings(self, new_embeddings):
|
765 |
+
self.classifier.emb2vocab.weight = new_embeddings
|
766 |
+
|
767 |
+
def forward(
|
768 |
+
self,
|
769 |
+
input_ids: Optional[torch.Tensor] = None,
|
770 |
+
attention_mask: Optional[torch.Tensor] = None,
|
771 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
772 |
+
position_ids: Optional[torch.Tensor] = None,
|
773 |
+
output_hidden_states: Optional[bool] = None,
|
774 |
+
output_attentions: Optional[bool] = None,
|
775 |
+
return_dict: Optional[bool] = None,
|
776 |
+
labels: Optional[torch.LongTensor] = None,
|
777 |
+
**kwargs
|
778 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
779 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
780 |
+
|
781 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
782 |
+
subword_prediction = self.classifier(sequence_output)
|
783 |
+
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
784 |
+
|
785 |
+
masked_lm_loss = None
|
786 |
+
if labels is not None:
|
787 |
+
labels_flatten = labels[:, 1:].flatten()
|
788 |
+
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
789 |
+
masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
790 |
+
|
791 |
+
if not return_dict:
|
792 |
+
output = (
|
793 |
+
subword_prediction,
|
794 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
795 |
+
*([attention_probs] if output_attentions else [])
|
796 |
+
)
|
797 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
798 |
+
|
799 |
+
return MaskedLMOutput(
|
800 |
+
loss=masked_lm_loss,
|
801 |
+
logits=subword_prediction,
|
802 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
803 |
+
attentions=attention_probs if output_attentions else None
|
804 |
+
)
|
805 |
+
|
806 |
+
|
807 |
+
class Classifier(nn.Module):
|
808 |
+
def __init__(self, config, num_labels: int):
|
809 |
+
super().__init__()
|
810 |
+
|
811 |
+
drop_out = getattr(config, "cls_dropout", None)
|
812 |
+
drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
|
813 |
+
|
814 |
+
self.projection: CastedLinear
|
815 |
+
self.emb2vocab: CastedLinear
|
816 |
+
self.pre_norm: nn.LayerNorm
|
817 |
+
self.post_norm: nn.LayerNorm
|
818 |
+
|
819 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
820 |
+
self.projection = CastedLinear(config.hidden_size, config.hidden_size, bias=False)
|
821 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
822 |
+
self.emb2vocab = CastedLinear(config.hidden_size, num_labels, bias=True)
|
823 |
+
self.dropout = nn.Dropout(drop_out)
|
824 |
+
|
825 |
+
self.initialize(config.hidden_size, config.intermediate_size, num_labels)
|
826 |
+
|
827 |
+
@torch.no_grad()
|
828 |
+
def initialize(self, hidden_size: int, intermediate_size: int, vocab_size: int) -> None:
|
829 |
+
proj_std: float = math.sqrt(2.0 / (hidden_size + intermediate_size))
|
830 |
+
|
831 |
+
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
832 |
+
nn.init.trunc_normal_(self.emb2vocab.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
833 |
+
self.emb2vocab.bias.zero_()
|
834 |
+
|
835 |
+
def project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
836 |
+
projection: torch.Tensor
|
837 |
+
|
838 |
+
projection = self.pre_norm(hidden_layer)
|
839 |
+
projection = self.dropout(projection)
|
840 |
+
projection = self.projection(hidden_layer)
|
841 |
+
projection = gelu_new(projection)
|
842 |
+
projection = self.post_norm(projection)
|
843 |
+
|
844 |
+
return projection
|
845 |
+
|
846 |
+
def calculate_output(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
847 |
+
return self.emb2vocab(hidden_layer)
|
848 |
+
|
849 |
+
def forward(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
850 |
+
output: torch.Tensor
|
851 |
+
projection: torch.Tensor
|
852 |
+
|
853 |
+
projection = self.project(hidden_layer)
|
854 |
+
output = self.calculate_output(projection)
|
855 |
+
|
856 |
+
return output
|
857 |
+
|
858 |
+
|
859 |
+
class GptBertForCausalLM(GptBertModel):
|
860 |
+
_keys_to_ignore_on_load_unexpected = ["head"]
|
861 |
+
|
862 |
+
def __init__(self, config, **kwargs):
|
863 |
+
config.is_decoder = True
|
864 |
+
super().__init__(config, add_mlm_layer=True, **kwargs)
|
865 |
+
|
866 |
+
def get_output_embeddings(self):
|
867 |
+
return self.classifier.emb2vocab.weight
|
868 |
+
|
869 |
+
def set_output_embeddings(self, new_embeddings):
|
870 |
+
self.classifier.emb2vocab.weight = new_embeddings
|
871 |
+
|
872 |
+
def get_input_embeddings(self):
|
873 |
+
return self.embedding.word_embedding
|
874 |
+
|
875 |
+
def set_input_embeddings(self, value):
|
876 |
+
self.embedding.word_embedding = value
|
877 |
+
|
878 |
+
def set_decoder(self, decoder):
|
879 |
+
self.encoder = decoder
|
880 |
+
|
881 |
+
def get_decoder(self):
|
882 |
+
return self.encoder
|
883 |
+
|
884 |
+
def can_generate(self):
|
885 |
+
return True
|
886 |
+
|
887 |
+
def forward(
|
888 |
+
self,
|
889 |
+
input_ids: torch.LongTensor = None,
|
890 |
+
attention_mask: Optional[torch.Tensor] = None,
|
891 |
+
position_ids: Optional[torch.LongTensor] = None,
|
892 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
893 |
+
past_key_values: Optional[torch.Tensor] = None,
|
894 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
895 |
+
labels: Optional[torch.LongTensor] = None,
|
896 |
+
use_cache: Optional[bool] = None,
|
897 |
+
cache_position: Optional[torch.LongTensor] = None,
|
898 |
+
output_attentions: Optional[bool] = None,
|
899 |
+
output_hidden_states: Optional[bool] = None,
|
900 |
+
return_dict: Optional[bool] = None
|
901 |
+
) -> Union[Tuple, CausalLMOutput]:
|
902 |
+
|
903 |
+
assert inputs_embeds is None, "inputs_embeds is not supported for now"
|
904 |
+
assert past_key_values is None, "past_key_values is not supported for now"
|
905 |
+
assert not use_cache, "use_cache is not supported for now"
|
906 |
+
|
907 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
908 |
+
subword_prediction = self.classifier(sequence_output)
|
909 |
+
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
910 |
+
|
911 |
+
masked_lm_loss = None
|
912 |
+
if labels is not None:
|
913 |
+
labels_flatten = labels[:, 1:].flatten()
|
914 |
+
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
915 |
+
masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
916 |
+
|
917 |
+
if not return_dict:
|
918 |
+
output = (
|
919 |
+
subword_prediction,
|
920 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
921 |
+
*([attention_probs] if output_attentions else [])
|
922 |
+
)
|
923 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
924 |
+
|
925 |
+
return CausalLMOutput(
|
926 |
+
loss=masked_lm_loss,
|
927 |
+
logits=subword_prediction,
|
928 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
929 |
+
attentions=attention_probs if output_attentions else None
|
930 |
+
)
|
931 |
+
|
932 |
+
def prepare_inputs_for_generation(
|
933 |
+
self,
|
934 |
+
input_ids: torch.Tensor,
|
935 |
+
past_key_values: Optional[torch.Tensor] = None,
|
936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
937 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
938 |
+
cache_position: Optional[torch.LongTensor] = None,
|
939 |
+
position_ids: Optional[torch.LongTensor] = None,
|
940 |
+
use_cache: bool = True,
|
941 |
+
num_logits_to_keep: Optional[int] = None,
|
942 |
+
**kwargs,
|
943 |
+
):
|
944 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
945 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
946 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
947 |
+
if past_key_values is not None:
|
948 |
+
if inputs_embeds is not None: # Exception 1
|
949 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
950 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
951 |
+
input_ids = input_ids[:, cache_position]
|
952 |
+
|
953 |
+
if attention_mask is not None and position_ids is None:
|
954 |
+
# create position_ids on the fly for batch generation
|
955 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
956 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
957 |
+
if past_key_values:
|
958 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
959 |
+
|
960 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
961 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
962 |
+
|
963 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
964 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
965 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
966 |
+
else:
|
967 |
+
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
|
968 |
+
|
969 |
+
if num_logits_to_keep is not None:
|
970 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
971 |
+
|
972 |
+
model_inputs.update(
|
973 |
+
{
|
974 |
+
"position_ids": position_ids,
|
975 |
+
"cache_position": cache_position,
|
976 |
+
"past_key_values": past_key_values,
|
977 |
+
"use_cache": use_cache,
|
978 |
+
"attention_mask": attention_mask,
|
979 |
+
}
|
980 |
+
)
|
981 |
+
return model_inputs
|
982 |
+
|
983 |
+
|
984 |
+
class GptBertForSequenceClassification(GptBertModel):
|
985 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
986 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
987 |
+
|
988 |
+
def __init__(self, config, **kwargs):
|
989 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
990 |
+
|
991 |
+
self.num_labels = config.num_labels
|
992 |
+
self.head = Classifier(config, self.num_labels)
|
993 |
+
|
994 |
+
def forward(
|
995 |
+
self,
|
996 |
+
input_ids: Optional[torch.Tensor] = None,
|
997 |
+
attention_mask: Optional[torch.Tensor] = None,
|
998 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
999 |
+
position_ids: Optional[torch.Tensor] = None,
|
1000 |
+
output_attentions: Optional[bool] = None,
|
1001 |
+
output_hidden_states: Optional[bool] = None,
|
1002 |
+
return_dict: Optional[bool] = None,
|
1003 |
+
labels: Optional[torch.LongTensor] = None,
|
1004 |
+
**kwargs
|
1005 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1006 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1007 |
+
|
1008 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
1009 |
+
logits = self.head(sequence_output[:, 0, :])
|
1010 |
+
|
1011 |
+
loss = None
|
1012 |
+
if labels is not None:
|
1013 |
+
if self.config.problem_type is None:
|
1014 |
+
if self.num_labels == 1:
|
1015 |
+
self.config.problem_type = "regression"
|
1016 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1017 |
+
self.config.problem_type = "single_label_classification"
|
1018 |
+
else:
|
1019 |
+
self.config.problem_type = "multi_label_classification"
|
1020 |
+
|
1021 |
+
if self.config.problem_type == "regression":
|
1022 |
+
loss_fct = nn.MSELoss()
|
1023 |
+
if self.num_labels == 1:
|
1024 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1025 |
+
else:
|
1026 |
+
loss = loss_fct(logits, labels)
|
1027 |
+
elif self.config.problem_type == "single_label_classification":
|
1028 |
+
loss_fct = nn.CrossEntropyLoss()
|
1029 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1030 |
+
elif self.config.problem_type == "multi_label_classification":
|
1031 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1032 |
+
loss = loss_fct(logits, labels)
|
1033 |
+
|
1034 |
+
if not return_dict:
|
1035 |
+
output = (
|
1036 |
+
logits,
|
1037 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1038 |
+
*([attention_probs] if output_attentions else [])
|
1039 |
+
)
|
1040 |
+
return ((loss,) + output) if loss is not None else output
|
1041 |
+
|
1042 |
+
return SequenceClassifierOutput(
|
1043 |
+
loss=loss,
|
1044 |
+
logits=logits,
|
1045 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1046 |
+
attentions=attention_probs if output_attentions else None
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
|
1050 |
+
class GptBertForTokenClassification(GptBertModel):
|
1051 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1052 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1053 |
+
|
1054 |
+
def __init__(self, config, **kwargs):
|
1055 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
1056 |
+
|
1057 |
+
self.num_labels = config.num_labels
|
1058 |
+
self.head = Classifier(config, self.num_labels)
|
1059 |
+
|
1060 |
+
def forward(
|
1061 |
+
self,
|
1062 |
+
input_ids: Optional[torch.Tensor] = None,
|
1063 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1064 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1065 |
+
position_ids: Optional[torch.Tensor] = None,
|
1066 |
+
output_attentions: Optional[bool] = None,
|
1067 |
+
output_hidden_states: Optional[bool] = None,
|
1068 |
+
return_dict: Optional[bool] = None,
|
1069 |
+
labels: Optional[torch.LongTensor] = None,
|
1070 |
+
**kwargs
|
1071 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1072 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1073 |
+
|
1074 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
1075 |
+
logits = self.head(sequence_output)
|
1076 |
+
|
1077 |
+
loss = None
|
1078 |
+
if labels is not None:
|
1079 |
+
loss_fct = nn.CrossEntropyLoss()
|
1080 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1081 |
+
|
1082 |
+
if not return_dict:
|
1083 |
+
output = (
|
1084 |
+
logits,
|
1085 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1086 |
+
*([attention_probs] if output_attentions else [])
|
1087 |
+
)
|
1088 |
+
return ((loss,) + output) if loss is not None else output
|
1089 |
+
|
1090 |
+
return TokenClassifierOutput(
|
1091 |
+
loss=loss,
|
1092 |
+
logits=logits,
|
1093 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1094 |
+
attentions=attention_probs if output_attentions else None
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
|
1098 |
+
class GptBertForQuestionAnswering(GptBertModel):
|
1099 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1100 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1101 |
+
|
1102 |
+
def __init__(self, config, **kwargs):
|
1103 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
1104 |
+
|
1105 |
+
self.num_labels = config.num_labels
|
1106 |
+
self.head = Classifier(config, self.num_labels)
|
1107 |
+
|
1108 |
+
def forward(
|
1109 |
+
self,
|
1110 |
+
input_ids: Optional[torch.Tensor] = None,
|
1111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1112 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1113 |
+
position_ids: Optional[torch.Tensor] = None,
|
1114 |
+
output_attentions: Optional[bool] = None,
|
1115 |
+
output_hidden_states: Optional[bool] = None,
|
1116 |
+
return_dict: Optional[bool] = None,
|
1117 |
+
start_positions: Optional[torch.Tensor] = None,
|
1118 |
+
end_positions: Optional[torch.Tensor] = None,
|
1119 |
+
**kwargs
|
1120 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1121 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1122 |
+
|
1123 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
1124 |
+
logits = self.head(sequence_output)
|
1125 |
+
|
1126 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1127 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1128 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1129 |
+
|
1130 |
+
total_loss = None
|
1131 |
+
if start_positions is not None and end_positions is not None:
|
1132 |
+
# If we are on multi-GPU, split add a dimension
|
1133 |
+
if len(start_positions.size()) > 1:
|
1134 |
+
start_positions = start_positions.squeeze(-1)
|
1135 |
+
if len(end_positions.size()) > 1:
|
1136 |
+
end_positions = end_positions.squeeze(-1)
|
1137 |
+
|
1138 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1139 |
+
ignored_index = start_logits.size(1)
|
1140 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1141 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1142 |
+
|
1143 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
1144 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1145 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1146 |
+
total_loss = (start_loss + end_loss) / 2
|
1147 |
+
|
1148 |
+
if not return_dict:
|
1149 |
+
output = (
|
1150 |
+
start_logits,
|
1151 |
+
end_logits,
|
1152 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1153 |
+
*([attention_probs] if output_attentions else [])
|
1154 |
+
)
|
1155 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1156 |
+
|
1157 |
+
return QuestionAnsweringModelOutput(
|
1158 |
+
loss=total_loss,
|
1159 |
+
start_logits=start_logits,
|
1160 |
+
end_logits=end_logits,
|
1161 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1162 |
+
attentions=attention_probs if output_attentions else None
|
1163 |
+
)
|
1164 |
+
|
1165 |
+
|
1166 |
+
class GptBertForMultipleChoice(GptBertModel):
|
1167 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
1168 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
1169 |
+
|
1170 |
+
def __init__(self, config, **kwargs):
|
1171 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
1172 |
+
|
1173 |
+
self.num_labels = getattr(config, "num_labels", 2)
|
1174 |
+
self.head = Classifier(config, self.num_labels)
|
1175 |
+
|
1176 |
+
def forward(
|
1177 |
+
self,
|
1178 |
+
input_ids: Optional[torch.Tensor] = None,
|
1179 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1180 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1181 |
+
position_ids: Optional[torch.Tensor] = None,
|
1182 |
+
labels: Optional[torch.Tensor] = None,
|
1183 |
+
output_attentions: Optional[bool] = None,
|
1184 |
+
output_hidden_states: Optional[bool] = None,
|
1185 |
+
return_dict: Optional[bool] = None,
|
1186 |
+
**kwargs
|
1187 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1188 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1189 |
+
num_choices = input_ids.shape[1]
|
1190 |
+
|
1191 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
1192 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1193 |
+
|
1194 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
|
1195 |
+
logits = self.head(sequence_output)
|
1196 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1197 |
+
|
1198 |
+
loss = None
|
1199 |
+
if labels is not None:
|
1200 |
+
loss_fct = nn.CrossEntropyLoss()
|
1201 |
+
loss = loss_fct(reshaped_logits, labels)
|
1202 |
+
|
1203 |
+
if not return_dict:
|
1204 |
+
output = (
|
1205 |
+
reshaped_logits,
|
1206 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
1207 |
+
*([attention_probs] if output_attentions else [])
|
1208 |
+
)
|
1209 |
+
return ((loss,) + output) if loss is not None else output
|
1210 |
+
|
1211 |
+
return MultipleChoiceModelOutput(
|
1212 |
+
loss=loss,
|
1213 |
+
logits=reshaped_logits,
|
1214 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
1215 |
+
attentions=attention_probs if output_attentions else None
|
1216 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7babbe2f0f59391dedc55eb4609596d3981e87bc62f877633851e494720cb95e
|
3 |
+
size 597611298
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<oad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"unk_token": "<unk>",
|
6 |
+
"sep_token": "</s>",
|
7 |
+
"pad_token": "<pad>",
|
8 |
+
"cls_token": "<s>",
|
9 |
+
"mask_token": "<mask>"
|
10 |
+
}
|