Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -1,3 +1,172 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            language:
         
     | 
| 3 | 
         
            +
            - 'no'
         
     | 
| 4 | 
         
            +
            - nb
         
     | 
| 5 | 
         
            +
            - nn
         
     | 
| 6 | 
         
            +
            - se
         
     | 
| 7 | 
         
            +
            inference: false
         
     | 
| 8 | 
         
            +
            tags:
         
     | 
| 9 | 
         
            +
            - BERT
         
     | 
| 10 | 
         
            +
            - GPT-BERT
         
     | 
| 11 | 
         
            +
            - NorBERT
         
     | 
| 12 | 
         
            +
            - Norwegian
         
     | 
| 13 | 
         
            +
            - encoder
         
     | 
| 14 | 
         
            +
            - decoder
         
     | 
| 15 | 
         
            +
            license: apache-2.0
         
     | 
| 16 | 
         
            +
            ---
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            <img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%>
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            # NorBERT 4 base
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            The fourth generation of NorBERT models mainly improves their efficiency, but also performance and flexibility.
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            <img src="https://huggingface.co/ltg/norbert4-base/resolve/main/model_performance.png" width=100%>
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            - **Made to encode long texts**: these models were trained on 16384-token-long texts, the sliding-window attention can then generalize to even longer sequences.
         
     | 
| 28 | 
         
            +
            - **Fast and memory-efficient training and inference**: using FlashAttention2 with unpadding, the new generation of NorBERT models can process the long texts with ease.
         
     | 
| 29 | 
         
            +
            - **Better performance**: better quality of training corpora and carefully tuned training settings leads to an improved performance over NorBERT 3.
         
     | 
| 30 | 
         
            +
            - **BERT as well as GPT**: the models can flexibly function as both bidirectional encoders (BERT) or unidirectional decoders (GPT), which makes them very flexible to any downstream use.
         
     | 
| 31 | 
         
            +
            - **Trained from scratch**: the model is trained from scratch on 600B tokens of Norwegian Bokmål, Nynorsk and Northern Sámi. We used the HPLT 2.0 corpus, FineWeb2 and Mímir Core.
         
     | 
| 32 | 
         
            +
            - **Permissable license**: the checkpoints are distributed freely under Apache 2.0, anyone can use our models.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            > [!TIP]
         
     | 
| 35 | 
         
            +
            > We recommend installing Flash Attention 2 and `torch.compile`-ing your models to get the highest training and inference efficiency.
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            ## All sizes of the NorBERT4 family:
         
     | 
| 40 | 
         
            +
            - [NorBERT 4 xsmall (17M)](https://huggingface.co/ltg/norbert4-xsmall)
         
     | 
| 41 | 
         
            +
            - [NorBERT 4 small (40M)](https://huggingface.co/ltg/norbert4-small)
         
     | 
| 42 | 
         
            +
            - [NorBERT 4 base (149M)](https://huggingface.co/ltg/norbert4-base)
         
     | 
| 43 | 
         
            +
            - [NorBERT 4 base (360M)](https://huggingface.co/ltg/norbert4-base)
         
     | 
| 44 | 
         
            +
            - [NorBERT 4 xlarge (987M)](https://huggingface.co/ltg/norbert4-xlarge)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            ## Example usage (bidirectional encoding)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`.
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            ```python
         
     | 
| 52 | 
         
            +
            import torch
         
     | 
| 53 | 
         
            +
            from transformers import AutoTokenizer, AutoModelForMaskedLM
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            # Import model
         
     | 
| 56 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 57 | 
         
            +
                "ltg/norbert4-base"
         
     | 
| 58 | 
         
            +
            )
         
     | 
| 59 | 
         
            +
            model = AutoModelForMaskedLM.from_pretrained(
         
     | 
| 60 | 
         
            +
                "ltg/norbert4-base",
         
     | 
| 61 | 
         
            +
                trust_remote_code=True
         
     | 
| 62 | 
         
            +
            )
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            # Tokenize text (with a mask token inside)
         
     | 
| 65 | 
         
            +
            input_text = tokenizer(
         
     | 
| 66 | 
         
            +
                f"Nå ønsker de seg en{tokenizer.mask_token} bolig.",
         
     | 
| 67 | 
         
            +
                return_tensors="pt"
         
     | 
| 68 | 
         
            +
            )
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            # Inference
         
     | 
| 71 | 
         
            +
            with torch.inference_mode:
         
     | 
| 72 | 
         
            +
                output_p = model(**input_text)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            # Unmask the text
         
     | 
| 75 | 
         
            +
            output_text = torch.where(
         
     | 
| 76 | 
         
            +
                input_text.input_ids == tokenizer.mask_token_id,
         
     | 
| 77 | 
         
            +
                output_p.logits.argmax(-1),
         
     | 
| 78 | 
         
            +
                input_text.input_ids
         
     | 
| 79 | 
         
            +
            )
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            # Decoding; should output: '<s>Nå ønsker de seg en ny bolig.'
         
     | 
| 82 | 
         
            +
            print(tokenizer.decode(output_text[0].tolist()))
         
     | 
| 83 | 
         
            +
            ```
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            ## Example usage (text generation)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            NorBERT now also supports unidirectional text decoding, it can generate text like any other GPT model:
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            ```python
         
     | 
| 90 | 
         
            +
            import torch
         
     | 
| 91 | 
         
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            # Import model
         
     | 
| 94 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 95 | 
         
            +
                "ltg/norbert4-base"
         
     | 
| 96 | 
         
            +
            )
         
     | 
| 97 | 
         
            +
            model = AutoModelForCausalLM.from_pretrained(
         
     | 
| 98 | 
         
            +
                "ltg/norbert4-base",
         
     | 
| 99 | 
         
            +
                trust_remote_code=True
         
     | 
| 100 | 
         
            +
            )
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
            # Define zero-shot translation prompt template
         
     | 
| 103 | 
         
            +
            prompt = """Engelsk: {0}
         
     | 
| 104 | 
         
            +
            Bokmål:"""
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
            # Define tokens that should end the generation (any token with a newline)
         
     | 
| 107 | 
         
            +
            eos_token_ids = [
         
     | 
| 108 | 
         
            +
                token_id
         
     | 
| 109 | 
         
            +
                for token_id in range(tokenizer.vocab_size)
         
     | 
| 110 | 
         
            +
                if '\n' in tokenizer.decode([token_id])
         
     | 
| 111 | 
         
            +
            ]
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            # Generation function
         
     | 
| 114 | 
         
            +
            @torch.inference_mode()
         
     | 
| 115 | 
         
            +
            def generate(text):
         
     | 
| 116 | 
         
            +
                text = prompt.format(text)
         
     | 
| 117 | 
         
            +
                input_ids = tokenizer(text, return_tensors='pt').input_ids
         
     | 
| 118 | 
         
            +
                prediction = model.generate(
         
     | 
| 119 | 
         
            +
                    input_ids,
         
     | 
| 120 | 
         
            +
                    max_new_tokens=64,
         
     | 
| 121 | 
         
            +
                    do_sample=False,
         
     | 
| 122 | 
         
            +
                    eos_token_id=eos_token_ids
         
     | 
| 123 | 
         
            +
                )
         
     | 
| 124 | 
         
            +
                return tokenizer.decode(prediction[0, input_ids.size(1):]).strip()
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            # Example usage
         
     | 
| 127 | 
         
            +
            generate("I'm a model that can generate text!")
         
     | 
| 128 | 
         
            +
            ```
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForCausalLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
            ## Contact
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
            David Samuel: `[email protected]`
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            ## Cite us
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            ```bibtex
         
     | 
| 139 | 
         
            +
            @inproceedings{charpentier-samuel-2024-bert,
         
     | 
| 140 | 
         
            +
                title = "{GPT} or {BERT}: why not both?",
         
     | 
| 141 | 
         
            +
                author = "Charpentier, Lucas Georges Gabriel  and
         
     | 
| 142 | 
         
            +
                  Samuel, David",
         
     | 
| 143 | 
         
            +
                booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
         
     | 
| 144 | 
         
            +
                month = nov,
         
     | 
| 145 | 
         
            +
                year = "2024",
         
     | 
| 146 | 
         
            +
                address = "Miami, FL, USA",
         
     | 
| 147 | 
         
            +
                publisher = "Association for Computational Linguistics",
         
     | 
| 148 | 
         
            +
                url = "https://aclanthology.org/2024.conll-babylm.24/",
         
     | 
| 149 | 
         
            +
                pages = "262--283"
         
     | 
| 150 | 
         
            +
            }
         
     | 
| 151 | 
         
            +
            ```
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            ```bibtex
         
     | 
| 154 | 
         
            +
            @inproceedings{samuel-etal-2023-norbench,
         
     | 
| 155 | 
         
            +
                title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
         
     | 
| 156 | 
         
            +
                author = "Samuel, David  and
         
     | 
| 157 | 
         
            +
                  Kutuzov, Andrey  and
         
     | 
| 158 | 
         
            +
                  Touileb, Samia  and
         
     | 
| 159 | 
         
            +
                  Velldal, Erik  and
         
     | 
| 160 | 
         
            +
                  {\O}vrelid, Lilja  and
         
     | 
| 161 | 
         
            +
                  R{\o}nningstad, Egil  and
         
     | 
| 162 | 
         
            +
                  Sigdel, Elina  and
         
     | 
| 163 | 
         
            +
                  Palatkina, Anna",
         
     | 
| 164 | 
         
            +
                booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
         
     | 
| 165 | 
         
            +
                month = may,
         
     | 
| 166 | 
         
            +
                year = "2023",
         
     | 
| 167 | 
         
            +
                address = "T{\'o}rshavn, Faroe Islands",
         
     | 
| 168 | 
         
            +
                publisher = "University of Tartu Library",
         
     | 
| 169 | 
         
            +
                url = "https://aclanthology.org/2023.nodalida-1.61",
         
     | 
| 170 | 
         
            +
                pages = "618--633"
         
     | 
| 171 | 
         
            +
            }
         
     | 
| 172 | 
         
            +
            ```
         
     |