Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,172 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- 'no'
|
4 |
+
- nb
|
5 |
+
- nn
|
6 |
+
- se
|
7 |
+
inference: false
|
8 |
+
tags:
|
9 |
+
- BERT
|
10 |
+
- GPT-BERT
|
11 |
+
- NorBERT
|
12 |
+
- Norwegian
|
13 |
+
- encoder
|
14 |
+
- decoder
|
15 |
+
license: apache-2.0
|
16 |
+
---
|
17 |
+
|
18 |
+
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%>
|
19 |
+
|
20 |
+
|
21 |
+
# NorBERT 4 base
|
22 |
+
|
23 |
+
The fourth generation of NorBERT models mainly improves their efficiency, but also performance and flexibility.
|
24 |
+
|
25 |
+
<img src="https://huggingface.co/ltg/norbert4-base/resolve/main/model_performance.png" width=100%>
|
26 |
+
|
27 |
+
- **Made to encode long texts**: these models were trained on 16384-token-long texts, the sliding-window attention can then generalize to even longer sequences.
|
28 |
+
- **Fast and memory-efficient training and inference**: using FlashAttention2 with unpadding, the new generation of NorBERT models can process the long texts with ease.
|
29 |
+
- **Better performance**: better quality of training corpora and carefully tuned training settings leads to an improved performance over NorBERT 3.
|
30 |
+
- **BERT as well as GPT**: the models can flexibly function as both bidirectional encoders (BERT) or unidirectional decoders (GPT), which makes them very flexible to any downstream use.
|
31 |
+
- **Trained from scratch**: the model is trained from scratch on 600B tokens of Norwegian Bokmål, Nynorsk and Northern Sámi. We used the HPLT 2.0 corpus, FineWeb2 and Mímir Core.
|
32 |
+
- **Permissable license**: the checkpoints are distributed freely under Apache 2.0, anyone can use our models.
|
33 |
+
|
34 |
+
> [!TIP]
|
35 |
+
> We recommend installing Flash Attention 2 and `torch.compile`-ing your models to get the highest training and inference efficiency.
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## All sizes of the NorBERT4 family:
|
40 |
+
- [NorBERT 4 xsmall (17M)](https://huggingface.co/ltg/norbert4-xsmall)
|
41 |
+
- [NorBERT 4 small (40M)](https://huggingface.co/ltg/norbert4-small)
|
42 |
+
- [NorBERT 4 base (149M)](https://huggingface.co/ltg/norbert4-base)
|
43 |
+
- [NorBERT 4 base (360M)](https://huggingface.co/ltg/norbert4-base)
|
44 |
+
- [NorBERT 4 xlarge (987M)](https://huggingface.co/ltg/norbert4-xlarge)
|
45 |
+
|
46 |
+
|
47 |
+
## Example usage (bidirectional encoding)
|
48 |
+
|
49 |
+
This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`.
|
50 |
+
|
51 |
+
```python
|
52 |
+
import torch
|
53 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
54 |
+
|
55 |
+
# Import model
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
+
"ltg/norbert4-base"
|
58 |
+
)
|
59 |
+
model = AutoModelForMaskedLM.from_pretrained(
|
60 |
+
"ltg/norbert4-base",
|
61 |
+
trust_remote_code=True
|
62 |
+
)
|
63 |
+
|
64 |
+
# Tokenize text (with a mask token inside)
|
65 |
+
input_text = tokenizer(
|
66 |
+
f"Nå ønsker de seg en{tokenizer.mask_token} bolig.",
|
67 |
+
return_tensors="pt"
|
68 |
+
)
|
69 |
+
|
70 |
+
# Inference
|
71 |
+
with torch.inference_mode:
|
72 |
+
output_p = model(**input_text)
|
73 |
+
|
74 |
+
# Unmask the text
|
75 |
+
output_text = torch.where(
|
76 |
+
input_text.input_ids == tokenizer.mask_token_id,
|
77 |
+
output_p.logits.argmax(-1),
|
78 |
+
input_text.input_ids
|
79 |
+
)
|
80 |
+
|
81 |
+
# Decoding; should output: '<s>Nå ønsker de seg en ny bolig.'
|
82 |
+
print(tokenizer.decode(output_text[0].tolist()))
|
83 |
+
```
|
84 |
+
|
85 |
+
## Example usage (text generation)
|
86 |
+
|
87 |
+
NorBERT now also supports unidirectional text decoding, it can generate text like any other GPT model:
|
88 |
+
|
89 |
+
```python
|
90 |
+
import torch
|
91 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
92 |
+
|
93 |
+
# Import model
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
+
"ltg/norbert4-base"
|
96 |
+
)
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(
|
98 |
+
"ltg/norbert4-base",
|
99 |
+
trust_remote_code=True
|
100 |
+
)
|
101 |
+
|
102 |
+
# Define zero-shot translation prompt template
|
103 |
+
prompt = """Engelsk: {0}
|
104 |
+
Bokmål:"""
|
105 |
+
|
106 |
+
# Define tokens that should end the generation (any token with a newline)
|
107 |
+
eos_token_ids = [
|
108 |
+
token_id
|
109 |
+
for token_id in range(tokenizer.vocab_size)
|
110 |
+
if '\n' in tokenizer.decode([token_id])
|
111 |
+
]
|
112 |
+
|
113 |
+
# Generation function
|
114 |
+
@torch.inference_mode()
|
115 |
+
def generate(text):
|
116 |
+
text = prompt.format(text)
|
117 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
118 |
+
prediction = model.generate(
|
119 |
+
input_ids,
|
120 |
+
max_new_tokens=64,
|
121 |
+
do_sample=False,
|
122 |
+
eos_token_id=eos_token_ids
|
123 |
+
)
|
124 |
+
return tokenizer.decode(prediction[0, input_ids.size(1):]).strip()
|
125 |
+
|
126 |
+
# Example usage
|
127 |
+
generate("I'm a model that can generate text!")
|
128 |
+
```
|
129 |
+
|
130 |
+
The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForCausalLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`.
|
131 |
+
|
132 |
+
## Contact
|
133 |
+
|
134 |
+
David Samuel: `[email protected]`
|
135 |
+
|
136 |
+
## Cite us
|
137 |
+
|
138 |
+
```bibtex
|
139 |
+
@inproceedings{charpentier-samuel-2024-bert,
|
140 |
+
title = "{GPT} or {BERT}: why not both?",
|
141 |
+
author = "Charpentier, Lucas Georges Gabriel and
|
142 |
+
Samuel, David",
|
143 |
+
booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning",
|
144 |
+
month = nov,
|
145 |
+
year = "2024",
|
146 |
+
address = "Miami, FL, USA",
|
147 |
+
publisher = "Association for Computational Linguistics",
|
148 |
+
url = "https://aclanthology.org/2024.conll-babylm.24/",
|
149 |
+
pages = "262--283"
|
150 |
+
}
|
151 |
+
```
|
152 |
+
|
153 |
+
```bibtex
|
154 |
+
@inproceedings{samuel-etal-2023-norbench,
|
155 |
+
title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
|
156 |
+
author = "Samuel, David and
|
157 |
+
Kutuzov, Andrey and
|
158 |
+
Touileb, Samia and
|
159 |
+
Velldal, Erik and
|
160 |
+
{\O}vrelid, Lilja and
|
161 |
+
R{\o}nningstad, Egil and
|
162 |
+
Sigdel, Elina and
|
163 |
+
Palatkina, Anna",
|
164 |
+
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
|
165 |
+
month = may,
|
166 |
+
year = "2023",
|
167 |
+
address = "T{\'o}rshavn, Faroe Islands",
|
168 |
+
publisher = "University of Tartu Library",
|
169 |
+
url = "https://aclanthology.org/2023.nodalida-1.61",
|
170 |
+
pages = "618--633"
|
171 |
+
}
|
172 |
+
```
|