ltg
/

PyTorch
MariaFjodorowa commited on
Commit
e3298c9
·
verified ·
1 Parent(s): 7981a88

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - nb
4
+ - nn
5
+ - sv
6
+ - da
7
+ - 'no'
8
+ license: apache-2.0
9
+ ---
10
+ ## Example usage
11
+
12
+ ```commandline
13
+ git clone [email protected]:ltgoslo/slide.git
14
+ cd src/
15
+ python3 fast_usage_example.py
16
+ ```
17
+
18
+ ## Cite us
19
+ @inproceedings{fedorova-etal-2025-multi,
20
+ title = "Multi-label {S}candinavian Language Identification ({SLIDE})",
21
+ author = "Fedorova, Mariia and
22
+ Frydenberg, Jonas Sebulon and
23
+ Handford, Victoria and
24
+ Lang{\o}, Victoria Ovedie Chruickshank and
25
+ Willoch, Solveig Helene and
26
+ Midtgaard, Marthe L{\o}ken and
27
+ Scherrer, Yves and
28
+ M{\ae}hlum, Petter and
29
+ Samuel, David",
30
+ editor = "Holdt, {\v{S}}pela Arhar and
31
+ Ilinykh, Nikolai and
32
+ Scalvini, Barbara and
33
+ Bruton, Micaella and
34
+ Debess, Iben Nyholm and
35
+ Tudor, Crina Madalina",
36
+ booktitle = "Proceedings of the Third Workshop on Resources and Representations for Under-Resourced Languages and Domains (RESOURCEFUL-2025)",
37
+ month = mar,
38
+ year = "2025",
39
+ address = "Tallinn, Estonia",
40
+ publisher = "University of Tartu Library, Estonia",
41
+ url = "https://aclanthology.org/2025.resourceful-1.33/",
42
+ pages = "179--189",
43
+ ISBN = "978-9908-53-121-2",
44
+ abstract = "Identifying closely related languages at sentence level is difficult, in particular because it is often impossible to assign a sentence to a single language. In this paper, we focus on multi-label sentence-level Scandinavian language identification (LID) for Danish, Norwegian Bokm{\r{a}}l, Norwegian Nynorsk, and Swedish. We present the Scandinavian Language Identification and Evaluation, SLIDE, a manually curated multi-label evaluation dataset and a suite of LID models with varying speed{--}accuracy tradeoffs. We demonstrate that the ability to identify multiple languages simultaneously is necessary for any accurate LID method, and present a novel approach to training such multi-label LID models."
45
+ }