--- license: mit tags: - downscaling - edsr - ERA5 - COSMO-REA6 - wind library_name: super-image inference: false --- # RCAN-DSC (4× Downscaling of Wind Velocities) This model is a custom-trained version of the [RCAN](https://arxiv.org/abs/1807.02758) model from the [`super-image`](https://github.com/eugenesiow/super-image) library. It is adapted for downscaling of **2-channel ERA5 data** (e.g., wind u and v components), by a factor of 4× (trained using **COSMO-REA6** as high-resolution data). ## 🧠 Model Description - Based on the original RCAN architecture from `super-image`. - `sub_mean` and `add_mean` normalization layers have been **removed** - Supports **multi-channel inputs**, currently set up for **2-channel wind velocity fields**. ## 🧪 Example ```python from super_image import RcanModel, RcanConfig from huggingface_hub import hf_hub_download import torch # load model path = hf_hub_download(repo_id="lschmidt/rcan-dsc", filename="rcan_model.py") exec(open(path).read()) model = load_rcan() # load config config, _ = RcanConfig.from_pretrained("lschmidt/rcan-dsc") # load pretrained weights state_dict_path = hf_hub_download(repo_id="lschmidt/rcan-dsc", filename="pytorch_model_4x.pt") state_dict = torch.load(state_dict_path, map_location="cpu") model.load_state_dict(state_dict, strict=False) # generate sample data (B, C, W, H) inputs = torch.randn(1, 2, 10, 10) # or use test data data_path = hf_hub_download( repo_id="lschmidt/rcan-dsc", filename="test_wind_velocities.nc", subfolder="test_data" ) ds = xr.open_dataset(data_path) u = ds["u100"].values[0] v = ds["v100"].values[0] inputs = torch.from_numpy(np.stack([u, v], axis=0)).unsqueeze(0).float() # prediction output = model(inputs)