aria-medium-base / modeling_aria.py
loua19's picture
merge
0c2eef3
# This is lightly adapted from https://github.com/EleutherAI/aria/blob/main/aria/model.py
from typing import Optional, Union, Tuple
import torch
import torch.utils.checkpoint
from torch import nn as nn
from torch.nn import functional as F, CrossEntropyLoss
from transformers import Cache, DynamicCache, StaticCache
from transformers.utils import logging
from transformers.generation import GenerationMixin
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
BaseModelOutputWithPoolingAndProjection,
)
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from .configuration_aria import AriaConfig
logger = logging.get_logger(__name__)
class AriaPreTrainedModel(PreTrainedModel):
config_class = AriaConfig
base_model_prefix = "aria"
supports_gradient_checkpointing = True
_no_split_modules = ["AriaBlock"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_sdpa = True
_supports_flex_attn = False
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range
)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range
)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class TransformerBlock(nn.Module):
def __init__(self, model_config: AriaConfig, layer_idx: int):
super().__init__()
self.drop_p = 0.0
self.n_heads = model_config.num_attention_heads
self.d_model = model_config.hidden_size
self.d_head = (
model_config.hidden_size // model_config.num_attention_heads
)
self.max_seq_len = model_config.max_seq_len
self.layer_idx = layer_idx
# Attention
self.mixed_qkv = nn.Linear(
in_features=self.d_model,
out_features=3 * self.d_model,
bias=False,
)
self.att_proj_linear = nn.Linear(
in_features=self.d_model,
out_features=self.d_model,
bias=False,
)
# FF Layer
self.ff_gate_proj = nn.Linear(
in_features=self.d_model,
out_features=self.d_model * model_config.ff_mult,
bias=False,
)
self.ff_up_proj = nn.Linear(
in_features=self.d_model,
out_features=self.d_model * model_config.ff_mult,
bias=False,
)
self.ff_down_proj = nn.Linear(
in_features=self.d_model * model_config.ff_mult,
out_features=self.d_model,
bias=False,
)
# Pre layer norms
self.norm1 = nn.LayerNorm(self.d_model)
self.norm2 = nn.LayerNorm(self.d_model)
def forward(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
freqs_cis: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[
Union[Cache, Tuple[Tuple[torch.FloatTensor]]]
] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
attn_output, attn_weights, present = self._att_block(
self.norm1(x),
attention_mask,
freqs_cis,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
x = x + attn_output
x = x + self._ff_block(self.norm2(x))
outputs = (x, present)
if use_cache:
outputs = (x, present, attn_weights)
else:
outputs = (x, attn_weights)
return outputs
def _att_block(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
freqs_cis: torch.Tensor,
past_key_values: Optional[
Union[Cache, Tuple[Tuple[torch.FloatTensor]]]
] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
batch_size, seq_len, _ = x.shape
mixed_qkv = self.mixed_qkv(x)
xq, xk, xv = mixed_qkv.chunk(3, -1)
# Reshape for rotary embeddings
# Need contiguous for q, k since in-place RoPE cannot be applied on a view
xq = xq.reshape(
batch_size, seq_len, self.n_heads, self.d_head
).contiguous()
xk = xk.reshape(
batch_size, seq_len, self.n_heads, self.d_head
).contiguous()
xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head)
# apply_rotary_post_emb expects: (b_sz, s_len, n_head, d_head)
xq = apply_rotary_emb(xq, freqs_cis)
xk = apply_rotary_emb(xk, freqs_cis)
xq, xk, xv = map(lambda t: t.transpose(1, 2), (xq, xk, xv))
if past_key_values is not None:
cache_kwargs = {
# "sin": sin,
# "cos": cos,
# "partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
xk, xv = past_key_values.update(
xk, xv, self.layer_idx, cache_kwargs
)
att = F.scaled_dot_product_attention(
query=xq,
key=xk,
value=xv,
attn_mask=attention_mask[..., : xk.shape[2]],
)
# Reshape for out: (b_sz, s_len, n_head, d_head)
out = att.transpose(1, 2).contiguous()
out = out.view(batch_size, seq_len, self.n_heads * self.d_head)
if not output_attentions:
att = None
return self.att_proj_linear(out), att, past_key_values
def _ff_block(self, x: torch.Tensor):
return self.ff_down_proj(
F.silu(self.ff_gate_proj(x)) * self.ff_up_proj(x)
)
class AriaModel(AriaPreTrainedModel):
"""Transformer decoder with no language model head.
Args:
model_config (ModelConfig): Model config settings.
"""
def __init__(self, model_config: AriaConfig):
super().__init__(model_config)
self.model_config = model_config
self.freqs_cis = None
self.causal_mask = None
self.tok_embeddings = nn.Embedding(
num_embeddings=model_config.vocab_size,
embedding_dim=model_config.hidden_size,
)
self.out_layer_norm = nn.LayerNorm(model_config.hidden_size)
self.encode_layers = nn.ModuleList()
for i in range(model_config.num_hidden_layers):
self.encode_layers.append(TransformerBlock(model_config, i))
self.gradient_checkpointing = False
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[
Union[Cache, Tuple[Tuple[torch.FloatTensor]]]
] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
"""Forward pass of Transformer.
Args:
src (torch.tensor): Input to encoder block, of shape (batch_size,
seq_len, d_model).
attn_mask (Optional[torch.tensor]): Attention mask of shape
(batch_size, seq_len). Defaults to None.
past_kv (Optional[list[KVCache]]): a list of kv caches. The list index
corresponds to the layer index.
Returns:
torch.tensor: Model outputs with shape (batch_size, seq_len,
d_model).
"""
if (
input_ids is not None
and input_ids.shape[1] > self.model_config.max_seq_len
):
raise ValueError(
f"Sequence length ({input_ids.shape[1]}) exceeds max_seq_len "
f"({self.model_config.max_seq_len})."
)
if (
inputs_embeds is not None
and inputs_embeds.shape[1] > self.model_config.max_seq_len
):
raise ValueError(
f"Sequence length ({inputs_embeds.shape[1]}) exceeds max_seq_len "
f"({self.model_config.max_seq_len})."
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.model_config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.model_config.output_hidden_states
)
return_dict = (
return_dict
if return_dict is not None
else self.model_config.use_return_dict
)
use_cache = (
use_cache if use_cache is not None else self.model_config.use_cache
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.tok_embeddings(input_ids)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(
past_key_values
)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
seq_length = inputs_embeds.shape[1]
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length()
if past_key_values is not None
else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + seq_length,
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
hidden_states = inputs_embeds
if self.causal_mask is None:
self.causal_mask = precompute_causal_mask(
max_seq_len=self.model_config.max_seq_len,
).to(input_ids.device)
if self.freqs_cis is None:
self.freqs_cis = precompute_freqs_cis(
seq_len=self.model_config.max_seq_len,
n_elem=self.model_config.hidden_size
// self.model_config.num_attention_heads,
base=500000,
dtype=hidden_states.dtype,
).to(input_ids.device)
freqs_cis = self.freqs_cis[cache_position]
if use_cache is True:
causal_mask = self.causal_mask[None, None, cache_position]
else:
causal_mask = self.causal_mask[None, None, :seq_length, :seq_length]
if attention_mask is not None:
pad_len = causal_mask.shape[3] - attention_mask.shape[1]
padded_attention_mask = F.pad(attention_mask, (0, pad_len), value=1)
padded_attention_mask = padded_attention_mask[:, None, None, :]
padded_attention_mask = padded_attention_mask.bool()
causal_mask = causal_mask & padded_attention_mask
kwargs = {
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"return_dict": return_dict,
"cache_position": cache_position,
}
next_decoder_cache = None
if self.gradient_checkpointing:
for layer in self.encode_layers:
def create_custom_forward(module):
def custom_forward(*args):
return module(*args)[0]
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
causal_mask,
freqs_cis,
**kwargs,
preserve_rng_state=True,
use_reentrant=True,
)
else:
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for layer in self.encode_layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = layer(
hidden_states, causal_mask, freqs_cis=freqs_cis, **kwargs
)
hidden_states = outputs[0]
if use_cache is True:
next_decoder_cache = outputs[1]
if output_attentions:
all_attentions = all_attentions + (
outputs[2 if use_cache else 1],
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.out_layer_norm(hidden_states)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class AriaForCausalLM(AriaPreTrainedModel, GenerationMixin):
"""Transformer decoder with head for language modelling.
Args:
model_config (ModelConfig): Model config settings.
"""
def __init__(self, model_config: AriaConfig):
super().__init__(model_config)
self.model_config = model_config
self.max_seq_len = model_config.max_seq_len
self.model = AriaModel(model_config)
self.lm_head = nn.Linear(
model_config.hidden_size, model_config.vocab_size, bias=False
)
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[
Union[Cache, Tuple[Tuple[torch.FloatTensor]]]
] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
"""Forward pass of Transformer decoder with LM head."""
return_dict = (
return_dict
if return_dict is not None
else self.model_config.use_return_dict
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden = outputs[0]
lm_logits = self.lm_head(hidden)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class AriaForSequenceEmbedding(AriaPreTrainedModel):
"""Transformer decoder embedding head for contrastive learning.
Args:
model_config (ModelConfig): Model config settings.
"""
def __init__(self, model_config: AriaConfig):
super().__init__(model_config)
assert model_config.embedding_size
self.model_config = model_config
self.max_seq_len = model_config.max_seq_len
self.model = AriaModel(model_config)
self.emb_head = nn.Linear(
model_config.hidden_size, model_config.embedding_size, bias=False
)
self.post_init()
def get_pooled_embedding(
self, input_ids: torch.Tensor, embedding: torch.Tensor
):
_batch_size = input_ids.shape[0]
eos_mask = input_ids == self.config.eos_token_id
if not eos_mask.any(dim=1).all():
raise ValueError("Each sequence must contain a EOS token")
eos_pos = eos_mask.int().argmax(dim=1)
pooled_embedding = embedding[
torch.arange(_batch_size, device=input_ids.device), eos_pos
]
return pooled_embedding
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[
Union[Cache, Tuple[Tuple[torch.FloatTensor]]]
] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
"""Forward pass of Transformer decoder with embedding head. Pooled
embedding is extracted from EOS token."""
return_dict = (
return_dict
if return_dict is not None
else self.model_config.use_return_dict
)
if (
position_ids is not None
or inputs_embeds is not None
or past_key_values is not None
or labels is not None
or cache_position is not None
or use_cache
):
raise ValueError("Provided args unsupported for embedding head")
outputs = self.model(
input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=False,
)
hidden = outputs[0]
embedding = self.emb_head(hidden)
pooled_embedding = self.get_pooled_embedding(
input_ids=input_ids,
embedding=embedding,
)
if not return_dict:
output = (pooled_embedding,) + outputs[1:]
return output
return BaseModelOutputWithPoolingAndProjection(
last_hidden_state=embedding,
pooler_output=pooled_embedding,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def precompute_causal_mask(max_seq_len: int):
return torch.tril(
torch.ones(max_seq_len, max_seq_len, dtype=torch.bool)
).cuda()
def precompute_freqs_cis(
seq_len: int,
n_elem: int,
base: int = 500000,
dtype: torch.dtype = torch.bfloat16,
):
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""
In-place RoPE. Credits to Katherine Crowson:
x shape (b_sz, s_len, n_head, d_head).
cos, sin shape (s_len, d_head // 2).
"""
d = x.shape[-1] // 2
cos = freqs_cis[..., 0][None, :, None]
sin = freqs_cis[..., 1][None, :, None]
x1, x2 = x[..., :d], x[..., d : d * 2]
tmp = x1.clone()
x1.mul_(cos).addcmul_(x2, sin, value=-1)
x2.mul_(cos).addcmul_(tmp, sin, value=1)
return x
__all__ = [
"AriaPreTrainedModel",
"AriaModel",
"TransformerBlock",
"AriaForCausalLM",
"AriaForSequenceEmbedding",
]