add emu3_expand.py for repro
Browse files- emu3_expand.py +451 -0
emu3_expand.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import shutil
|
6 |
+
import numpy as np
|
7 |
+
from pathlib import Path
|
8 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
from safetensors.torch import safe_open, save_file
|
10 |
+
|
11 |
+
from typing import Any, Dict, List, Optional, Union
|
12 |
+
|
13 |
+
# interpolation from mergekit
|
14 |
+
# thanks charles!
|
15 |
+
def normalize(v: np.ndarray, eps: float):
|
16 |
+
norm_v = np.linalg.norm(v)
|
17 |
+
if norm_v > eps:
|
18 |
+
v = v / norm_v
|
19 |
+
return v
|
20 |
+
|
21 |
+
def lerp(
|
22 |
+
t: float, v0: Union[np.ndarray, torch.Tensor], v1: Union[np.ndarray, torch.Tensor]
|
23 |
+
) -> Union[np.ndarray, torch.Tensor]:
|
24 |
+
return (1 - t) * v0 + t * v1
|
25 |
+
|
26 |
+
def slerp(
|
27 |
+
t: Union[float, np.ndarray],
|
28 |
+
v0: Union[np.ndarray, torch.Tensor],
|
29 |
+
v1: Union[np.ndarray, torch.Tensor],
|
30 |
+
DOT_THRESHOLD: float = 0.9995,
|
31 |
+
eps: float = 1e-8,
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
Spherical linear interpolation
|
35 |
+
|
36 |
+
From: https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
|
37 |
+
Args:
|
38 |
+
t (float/np.ndarray): Float value between 0.0 and 1.0
|
39 |
+
v0 (np.ndarray): Starting vector
|
40 |
+
v1 (np.ndarray): Final vector
|
41 |
+
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
42 |
+
colinear. Not recommended to alter this.
|
43 |
+
Returns:
|
44 |
+
v2 (np.ndarray): Interpolation vector between v0 and v1
|
45 |
+
"""
|
46 |
+
is_torch = False
|
47 |
+
if not isinstance(v0, np.ndarray):
|
48 |
+
is_torch = True
|
49 |
+
v0 = v0.detach().cpu().float().numpy()
|
50 |
+
if not isinstance(v1, np.ndarray):
|
51 |
+
is_torch = True
|
52 |
+
v1 = v1.detach().cpu().float().numpy()
|
53 |
+
|
54 |
+
# Copy the vectors to reuse them later
|
55 |
+
v0_copy = np.copy(v0)
|
56 |
+
v1_copy = np.copy(v1)
|
57 |
+
|
58 |
+
# Normalize the vectors to get the directions and angles
|
59 |
+
v0 = normalize(v0, eps)
|
60 |
+
v1 = normalize(v1, eps)
|
61 |
+
|
62 |
+
# Dot product with the normalized vectors (can't use np.dot in W)
|
63 |
+
dot = np.sum(v0 * v1)
|
64 |
+
|
65 |
+
# If absolute value of dot product is almost 1, vectors are ~colinear, so use lerp
|
66 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
67 |
+
res = lerp(t, v0_copy, v1_copy)
|
68 |
+
return maybe_torch(res, is_torch)
|
69 |
+
|
70 |
+
# Calculate initial angle between v0 and v1
|
71 |
+
theta_0 = np.arccos(dot)
|
72 |
+
sin_theta_0 = np.sin(theta_0)
|
73 |
+
|
74 |
+
# Angle at timestep t
|
75 |
+
theta_t = theta_0 * t
|
76 |
+
sin_theta_t = np.sin(theta_t)
|
77 |
+
|
78 |
+
# Finish the slerp algorithm
|
79 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
80 |
+
s1 = sin_theta_t / sin_theta_0
|
81 |
+
res = s0 * v0_copy + s1 * v1_copy
|
82 |
+
|
83 |
+
return maybe_torch(res, is_torch)
|
84 |
+
|
85 |
+
|
86 |
+
def maybe_torch(v: np.ndarray, is_torch: bool):
|
87 |
+
if is_torch:
|
88 |
+
return torch.from_numpy(v)
|
89 |
+
return v
|
90 |
+
|
91 |
+
|
92 |
+
# move layer indices backwards to make room for inserted layer
|
93 |
+
def move_layer_back(model_dict, num_hidden_layers, layer_keys, layer_num, t):
|
94 |
+
# just rename the keys
|
95 |
+
print(f"move_layer_back {layer_keys[layer_num]}")
|
96 |
+
|
97 |
+
d = []
|
98 |
+
for k in layer_keys[layer_num]:
|
99 |
+
tensor = model_dict[k]
|
100 |
+
|
101 |
+
# loop backwards through the layers, increasing the index
|
102 |
+
# by one until the insertion layer has been reached
|
103 |
+
# model.layers.0.mlp.down_proj -> model.layers.1.mlp.down_proj
|
104 |
+
# .weight + .bias (for qwen)
|
105 |
+
|
106 |
+
if k.startswith(f'model.layers.{layer_num}.'):
|
107 |
+
tensor_suffix = k[len(f'model.layers.{layer_num}.'):]
|
108 |
+
tensor_cur_prefix = f'model.layers.{layer_num}.'
|
109 |
+
tensor_next_prefix = f'model.layers.{layer_num+1}.'
|
110 |
+
tensor_prev_prefix = f'model.layers.{layer_num-1}.'
|
111 |
+
|
112 |
+
model_dict[tensor_next_prefix + tensor_suffix] = tensor
|
113 |
+
del model_dict[k]
|
114 |
+
|
115 |
+
d.append(tensor_next_prefix + tensor_suffix)
|
116 |
+
|
117 |
+
#print(layer_keys[layer_num])
|
118 |
+
layer_keys[layer_num+1] = d
|
119 |
+
#print(layer_keys[layer_num+1])
|
120 |
+
|
121 |
+
#import pprint
|
122 |
+
#pprint.pp(model_dict)
|
123 |
+
|
124 |
+
# given a dict of tensors, a key, and layer_num,
|
125 |
+
# return the tensor at previous layer's version of key
|
126 |
+
def get_prev_tensor(model_dict, key, layer_num):
|
127 |
+
if key.startswith(f'model.layers.{layer_num}.'):
|
128 |
+
suffix = key[len(f'model.layers.{layer_num}.'):]
|
129 |
+
cur_prefix = f'model.layers.{layer_num}.'
|
130 |
+
prev_prefix = f'model.layers.{layer_num-1}.'
|
131 |
+
return model_dict[prev_prefix + suffix]
|
132 |
+
return None
|
133 |
+
|
134 |
+
# given a dict of tensors, a key, and layer_num,
|
135 |
+
# return the tensor at the next layer's version of key
|
136 |
+
def get_next_tensor(model_dict, key, layer_num):
|
137 |
+
if key.startswith(f'model.layers.{layer_num}.'):
|
138 |
+
suffix = key[len(f'model.layers.{layer_num}.'):]
|
139 |
+
cur_prefix = f'model.layers.{layer_num}.'
|
140 |
+
next_prefix = f'model.layers.{layer_num+1}.'
|
141 |
+
return model_dict[next_prefix + suffix]
|
142 |
+
return None
|
143 |
+
|
144 |
+
def insert_layer(model_dict, num_hidden_layers, layer_keys, layer_num, t=0.5, out_scale=0.4, scale=None):
|
145 |
+
print(f"inserting layer between {layer_num-1} and {layer_num} [t={t}]")
|
146 |
+
|
147 |
+
# need to move all layers after the insertion point
|
148 |
+
for i in range(num_hidden_layers, layer_num, -1):
|
149 |
+
#print(i)
|
150 |
+
move_layer_back(model_dict, num_hidden_layers, layer_keys, i - 1, t)
|
151 |
+
|
152 |
+
|
153 |
+
# now merge layer+1 with layer-1 and save to layer
|
154 |
+
# (because everything got moved back)
|
155 |
+
|
156 |
+
for k in layer_keys[layer_num]:
|
157 |
+
#print(k)
|
158 |
+
tensor = get_next_tensor(model_dict, k, layer_num)
|
159 |
+
prev_tensor = get_prev_tensor(model_dict, k, layer_num)
|
160 |
+
merge_tensor = lerp(t, prev_tensor, tensor)
|
161 |
+
if scale is not None:
|
162 |
+
merge_tensor = merge_tensor * scale
|
163 |
+
print(f"merging {layer_num-1} w/ {layer_num+1}")
|
164 |
+
#merge_tensor = slerp(t, prev_tensor, tensor)
|
165 |
+
if k.endswith("mlp.down_proj.weight"):
|
166 |
+
merge_tensor = merge_tensor*out_scale
|
167 |
+
if k.endswith("mlp.o_proj.weight"):
|
168 |
+
merge_tensor = merge_tensor*out_scale
|
169 |
+
if k.endswith(".bias"):
|
170 |
+
merge_tensor = merge_tensor*out_scale
|
171 |
+
|
172 |
+
model_dict[k] = merge_tensor
|
173 |
+
|
174 |
+
def get_dtype_size_in_bytes(tensor):
|
175 |
+
dtype = tensor.dtype
|
176 |
+
if dtype == torch.float32:
|
177 |
+
size_in_bytes = tensor.numel() * 4
|
178 |
+
elif dtype == torch.float64:
|
179 |
+
size_in_bytes = tensor.numel() * 8
|
180 |
+
elif dtype == torch.int32:
|
181 |
+
size_in_bytes = tensor.numel() * 4
|
182 |
+
elif dtype == torch.int64:
|
183 |
+
size_in_bytes = tensor.numel() * 8
|
184 |
+
elif dtype == torch.bool:
|
185 |
+
size_in_bytes = tensor.numel() * 1
|
186 |
+
else:
|
187 |
+
size_in_bytes = 0
|
188 |
+
return size_in_bytes
|
189 |
+
|
190 |
+
model_name = 'BAAI/Emu3-Gen'
|
191 |
+
dir_name = './'
|
192 |
+
#dir_name = None
|
193 |
+
conf = {}
|
194 |
+
|
195 |
+
with open(Path(dir_name or model_name) / 'config.json') as f:
|
196 |
+
conf = json.load(f)
|
197 |
+
|
198 |
+
st_dict = {}
|
199 |
+
tensor_dict = {}
|
200 |
+
|
201 |
+
if (Path(dir_name) / 'model.safetensors.index.json').is_file():
|
202 |
+
with open(Path(dir_name or model_name) / 'model.safetensors.index.json') as f:
|
203 |
+
st_index = json.load(f)
|
204 |
+
tensors = st_index['weight_map'].keys()
|
205 |
+
files = []
|
206 |
+
for name in tensors:
|
207 |
+
if st_index['weight_map'][name] not in files:
|
208 |
+
files.append(st_index['weight_map'][name])
|
209 |
+
#print(files)
|
210 |
+
for st in files:
|
211 |
+
tensor_dict = safe_open(st, framework='pt')
|
212 |
+
for k in tensor_dict.keys():
|
213 |
+
st_dict[k] = tensor_dict.get_tensor(k)
|
214 |
+
#print(st_dict)
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
elif (Path(dir_name) / 'model.safetensors').is_file():
|
220 |
+
model_fn = 'model.safetensors'
|
221 |
+
tensor_dict = safe_open(model_fn, framework='pt')
|
222 |
+
for k in tensor_dict.keys():
|
223 |
+
st_dict[k] = tensor_dict.get_tensor(k)
|
224 |
+
file_dict = {'model.safetensors': st_dict}
|
225 |
+
else:
|
226 |
+
print("please convert to safetensors")
|
227 |
+
sys.exit(-1)
|
228 |
+
|
229 |
+
print(conf)
|
230 |
+
num_hidden_layers = conf['num_hidden_layers']
|
231 |
+
print(num_hidden_layers)
|
232 |
+
|
233 |
+
model = {}
|
234 |
+
#sys.exit(-1)
|
235 |
+
|
236 |
+
#for k in tensor_dict.keys():
|
237 |
+
#model[k] = tensor_dict.get_tensor(k)
|
238 |
+
|
239 |
+
|
240 |
+
#print(tensor_dict.keys())
|
241 |
+
#import pprint
|
242 |
+
#pprint.pp(model)
|
243 |
+
|
244 |
+
#layer = 0
|
245 |
+
layer_keys = {}
|
246 |
+
|
247 |
+
for layer in range(num_hidden_layers):
|
248 |
+
#layer_keys[layer] = [k for k in sorted(tensor_dict.keys()) if k.startswith(f'model.layers.{layer}.')]
|
249 |
+
layer_keys[layer] = [k for k in sorted(st_dict.keys()) if k.startswith(f'model.layers.{layer}.')]
|
250 |
+
|
251 |
+
for k in layer_keys.keys():
|
252 |
+
print(f"Layer {k}")
|
253 |
+
print(layer_keys[k])
|
254 |
+
print("")
|
255 |
+
|
256 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 24, 0.5, 0.35, scale=None)
|
257 |
+
num_hidden_layers += 1
|
258 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 23, 0.5, 0.35, scale=None)
|
259 |
+
num_hidden_layers += 1
|
260 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 22, 0.5, 0.35, scale=None)
|
261 |
+
num_hidden_layers += 1
|
262 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 16, 0.5, 0.35, scale=None)
|
263 |
+
num_hidden_layers += 1
|
264 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 15, 0.5, 0.35, scale=None)
|
265 |
+
num_hidden_layers += 1
|
266 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 14, 0.5, 0.35, scale=None)
|
267 |
+
num_hidden_layers += 1
|
268 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 13, 0.5, 0.35, scale=None)
|
269 |
+
num_hidden_layers += 1
|
270 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 12, 0.5, 0.35, scale=None)
|
271 |
+
num_hidden_layers += 1
|
272 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 11, 0.5, 0.35, scale=None)
|
273 |
+
num_hidden_layers += 1
|
274 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 11, 0.5, 0.35, scale=None)
|
275 |
+
num_hidden_layers += 1
|
276 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 10, 0.5, 0.35, scale=None)
|
277 |
+
num_hidden_layers += 1
|
278 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 9, 0.5, 0.35, scale=None)
|
279 |
+
num_hidden_layers += 1
|
280 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 8, 0.5, 0.35, scale=None)
|
281 |
+
num_hidden_layers += 1
|
282 |
+
insert_layer(st_dict, num_hidden_layers, layer_keys, 7, 0.5, 0.35, scale=None)
|
283 |
+
num_hidden_layers += 1
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
os.makedirs("original", exist_ok=True)
|
289 |
+
#shutil.copy("model.safetensors", "original")
|
290 |
+
shutil.copy("config.json", "original")
|
291 |
+
|
292 |
+
#save_file(st_dict, "model.safetensors", metadata={"format": "pt"})
|
293 |
+
|
294 |
+
max_shard_size = 5000000000
|
295 |
+
current_shard_size = 0
|
296 |
+
current_shard_index = 0
|
297 |
+
shard_dict = {}
|
298 |
+
current_shard = {}
|
299 |
+
shard_names = list(st_dict.keys())
|
300 |
+
|
301 |
+
byte_sum = 0
|
302 |
+
param_sum = 0
|
303 |
+
params = {k: st_dict[k].numel() for k in st_dict.keys()}
|
304 |
+
tensor_size = {k: get_dtype_size_in_bytes(st_dict[k]) for k in st_dict.keys()}
|
305 |
+
for p in params.keys():
|
306 |
+
param_sum += params[p]
|
307 |
+
byte_sum += tensor_size[p]
|
308 |
+
print(f"total params: {param_sum}")
|
309 |
+
print(f"total size in bytes: {byte_sum}")
|
310 |
+
|
311 |
+
if 'lm_head.weight' in shard_names:
|
312 |
+
tensor_name = 'lm_head.weight'
|
313 |
+
current_shard[tensor_name] = st_dict[tensor_name]
|
314 |
+
current_shard_size += tensor_size[tensor_name]
|
315 |
+
# for i in range(len(shard_names)):
|
316 |
+
# if shard_names[i] == tensor_name:
|
317 |
+
# del shard_names[i]
|
318 |
+
# break
|
319 |
+
|
320 |
+
layers = {}
|
321 |
+
|
322 |
+
for i in range(num_hidden_layers):
|
323 |
+
current_sizes = {}
|
324 |
+
layers[i] = [k for k in shard_names if k.startswith(f"model.layers.{i}.")]
|
325 |
+
|
326 |
+
for t in layers[i]:
|
327 |
+
#current_shard[t] = st_dict[t]
|
328 |
+
#size = get_dtype_size_in_bytes(st_dict[t])
|
329 |
+
#current_sizes[t] = size
|
330 |
+
current_sizes[t] = tensor_size[t]
|
331 |
+
|
332 |
+
for i in range(len(shard_names)):
|
333 |
+
if shard_names[i] == tensor_name:
|
334 |
+
del shard_names[i]
|
335 |
+
break
|
336 |
+
|
337 |
+
z = [k for k in shard_names if k.startswith(f"model.layers.")]
|
338 |
+
z.append("lm_head.weight")
|
339 |
+
|
340 |
+
remnants = list(set(shard_names) - set(z))
|
341 |
+
print(f"remnants size: {len(remnants)}")
|
342 |
+
print(remnants)
|
343 |
+
|
344 |
+
|
345 |
+
layer_size = 0
|
346 |
+
for l in layers[0]:
|
347 |
+
layer_size += tensor_size[l]
|
348 |
+
print(f"total size of tensors in a single layer: {layer_size}")
|
349 |
+
|
350 |
+
|
351 |
+
for i in range(num_hidden_layers):
|
352 |
+
print(f"current_shard_size: {current_shard_size}")
|
353 |
+
print(f"layer_size: {layer_size}")
|
354 |
+
print(f"max_shard_size: {max_shard_size}")
|
355 |
+
if current_shard_size + layer_size >= max_shard_size:
|
356 |
+
print(current_shard.keys())
|
357 |
+
# write shard
|
358 |
+
print(f"writing xmodel-{current_shard_index}.safetensors")
|
359 |
+
save_file(current_shard, f"xmodel-{current_shard_index}.safetensors", metadata={"format": "pt"})
|
360 |
+
shard_dict[current_shard_index] = current_shard.copy()
|
361 |
+
current_shard_size = 0
|
362 |
+
current_shard_index += 1
|
363 |
+
current_shard = {}
|
364 |
+
print(f"wrote xmodel-{current_shard_index}.safetensors")
|
365 |
+
|
366 |
+
for t in layers[i]:
|
367 |
+
print(f"shard: {t}")
|
368 |
+
current_shard[t] = st_dict[t]
|
369 |
+
current_shard_size += tensor_size[t]
|
370 |
+
|
371 |
+
print("")
|
372 |
+
print(shard_names)
|
373 |
+
print("")
|
374 |
+
print("")
|
375 |
+
print(current_shard.keys())
|
376 |
+
|
377 |
+
# add remnants
|
378 |
+
|
379 |
+
for x in remnants:
|
380 |
+
remnant_size = get_dtype_size_in_bytes(st_dict[x])
|
381 |
+
if current_shard_size + remnant_size < max_shard_size:
|
382 |
+
current_shard[x] = st_dict[x]
|
383 |
+
for i in range(len(remnants)):
|
384 |
+
if remnants[i] == tensor_name:
|
385 |
+
del remnants[i]
|
386 |
+
break
|
387 |
+
|
388 |
+
# write shard
|
389 |
+
print(f"writing xmodel-{current_shard_index}.safetensors")
|
390 |
+
save_file(current_shard, f"xmodel-{current_shard_index}.safetensors", metadata={"format": "pt"})
|
391 |
+
shard_dict[current_shard_index] = current_shard.copy()
|
392 |
+
current_shard_size = 0
|
393 |
+
current_shard_index += 1
|
394 |
+
current_shard = {}
|
395 |
+
print(f"wrote xmodel-{current_shard_index}.safetensors")
|
396 |
+
|
397 |
+
for x in remnants:
|
398 |
+
current_shard[x] = st_dict[x]
|
399 |
+
|
400 |
+
if len(remnants) > 0:
|
401 |
+
# write shard
|
402 |
+
print(f"writing xmodel-{current_shard_index}.safetensors")
|
403 |
+
save_file(current_shard, f"xmodel-{current_shard_index}.safetensors", metadata={"format": "pt"})
|
404 |
+
shard_dict[current_shard_index] = current_shard.copy()
|
405 |
+
current_shard_size = 0
|
406 |
+
current_shard_index += 1
|
407 |
+
#current_shard = {}
|
408 |
+
print(f"wrote xmodel-{current_shard_index-1}.safetensors")
|
409 |
+
|
410 |
+
|
411 |
+
# move safetensors to original
|
412 |
+
print("Moving old safetensors to old/")
|
413 |
+
unsorted_files = glob.glob("model-*-of-*.safetensors")
|
414 |
+
files = sorted(unsorted_files)
|
415 |
+
|
416 |
+
os.makedirs("old", exist_ok=True)
|
417 |
+
|
418 |
+
shutil.copy("config.json", "old")
|
419 |
+
|
420 |
+
for file in files:
|
421 |
+
Path("old/" + file).unlink()
|
422 |
+
shutil.move(file, "old")
|
423 |
+
|
424 |
+
Path("old/model.safetensors.index.json").unlink()
|
425 |
+
shutil.move("model.safetensors.index.json", "old")
|
426 |
+
|
427 |
+
# move xmodel to safetensors
|
428 |
+
for idx in range(current_shard_index):
|
429 |
+
if Path(f"xmodel-{idx}.safetensors").is_file():
|
430 |
+
shutil.move(f"xmodel-{idx}.safetensors", f"model-{idx+1:05}-of-{current_shard_index:05}.safetensors")
|
431 |
+
|
432 |
+
|
433 |
+
# write safetensor index
|
434 |
+
wmap = {}
|
435 |
+
index = {}
|
436 |
+
|
437 |
+
for idx in range(current_shard_index):
|
438 |
+
#print(idx)
|
439 |
+
ts = shard_dict[idx].keys()
|
440 |
+
|
441 |
+
for tname in ts:
|
442 |
+
wmap[tname] = f"model-{idx+1:05}-of-{current_shard_index:05}.safetensors"
|
443 |
+
|
444 |
+
index['metadata'] = {'total_size': param_sum}
|
445 |
+
index['weight_map'] = wmap
|
446 |
+
with open("model.safetensors.index.json", "w") as f:
|
447 |
+
json.dump(index, f, indent=4)
|
448 |
+
|
449 |
+
conf['num_hidden_layers'] = num_hidden_layers
|
450 |
+
with open(Path(dir_name or model_name) / 'config.json', "w") as f:
|
451 |
+
json.dump(conf, f, indent=4)
|