--- library_name: transformers license: mit --- # sglang-EAGLE3-Llama-4-Scout-17B-16E-Instruct-v1 ## Model Introduction The Eagle3 draft model was trained using the [SpecForge](https://github.com/sgl-project/SpecForge) framework for the Llama4 Scout 17B-16E Instruct model, leveraging a combination of UltraChat and ShareGPT datasets. Under a 3-1-4 speculative decoding configuration—3 speculative steps, top-1 token selection, and 4 draft tokens—it achieves an acceptance length of 2.27. ## Usage You can use this Eagle3 draft model in [SGLang](https://github.com/sgl-project/sglang) with the following command: ```bash python3 -m sglang.launch_server \ --model meta-llama/Llama-4-Scout-17B-16E-Instruct \ --speculative-algorithm EAGLE3 \ --speculative-draft-model-path lmsys/sglang-EAGLE3-Llama-4-Scout-17B-16E-Instruct-v1 \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 \ --mem-fraction-static 0.75 \ --cuda-graph-max-bs 2 \ --tp 8 \ --context-length 8192 \ --trust-remote-code \ --host 0.0.0.0 \ --port 30000 \ --dtype bfloat16 ```