Update README.md
Browse files
README.md
CHANGED
@@ -14,6 +14,43 @@ Llama-3.2-SFT-Vision-Arena is a chat assistant trained by fine-tuning Llama-3.2-
|
|
14 |
- Repository: https://github.com/lm-sys/FastChat
|
15 |
- Paper: https://arxiv.org/abs/2412.08687
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
### Uses
|
18 |
The primary use of Llama-3.2-SFT-Vision-Arena is research on vision language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
19 |
|
|
|
14 |
- Repository: https://github.com/lm-sys/FastChat
|
15 |
- Paper: https://arxiv.org/abs/2412.08687
|
16 |
|
17 |
+
### Sample Inference Code
|
18 |
+
```
|
19 |
+
import requests
|
20 |
+
import torch
|
21 |
+
from PIL import Image
|
22 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
23 |
+
|
24 |
+
model_id = "lmarena-ai/llama-3.2-sft-vision-arena"
|
25 |
+
|
26 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
27 |
+
model_id,
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
device_map="auto",
|
30 |
+
)
|
31 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
32 |
+
|
33 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
|
34 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
35 |
+
|
36 |
+
messages = [
|
37 |
+
{"role": "user", "content": [
|
38 |
+
{"type": "image"},
|
39 |
+
{"type": "text", "text": "Write a haiku about this image: "}
|
40 |
+
]}
|
41 |
+
]
|
42 |
+
input_text = processor.tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
43 |
+
inputs = processor(
|
44 |
+
image,
|
45 |
+
input_text,
|
46 |
+
add_special_tokens=False,
|
47 |
+
return_tensors="pt"
|
48 |
+
).to(model.device)
|
49 |
+
|
50 |
+
output = model.generate(**inputs, max_new_tokens=30)
|
51 |
+
print(processor.decode(output[0]))
|
52 |
+
```
|
53 |
+
|
54 |
### Uses
|
55 |
The primary use of Llama-3.2-SFT-Vision-Arena is research on vision language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
56 |
|