--- library_name: transformers license: gemma base_model: google/paligemma2-3b-pt-448 tags: - generated_from_trainer model-index: - name: paligemma-architecture-styles results: [] language: - en --- # paligemma-architecture-styles This model is a fine-tuned version of [google/paligemma2-3b-pt-448](https://huggingface.co/google/paligemma2-3b-pt-448) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 3 ### Training results TrainOutput(global_step=261, training_loss=1.761135561912681, metrics={'train_runtime': 1063.4627, 'train_samples_per_second': 1.975, 'train_steps_per_second': 0.245, 'total_flos': 3.156513684279552e+16, 'train_loss': 1.761135561912681, 'epoch': 2.9714285714285715}) ### Evals on base vs fine-tune Base model: Evaluation complete - Accuracy: 0.2400 (240/1000) Performance by style: Ancient Egyptian architecture: 0.09 (5/57) Art Deco architecture: 0.23 (17/75) Art Nouveau architecture: 0.01 (1/73) Baroque architecture: 0.26 (15/58) Bauhaus architecture: 0.00 (0/58) Brutalism: 0.00 (0/38) Byzantine architecture: 0.34 (17/50) Chicago school architecture: 0.06 (3/51) Colonial architecture: 0.30 (27/89) Deconstructivism: 0.00 (0/38) Gothic architecture: 0.98 (59/60) Greek Revival architecture: 0.45 (26/58) International style: 0.00 (0/66) Neoclassicism: 0.14 (18/125) Postmodern architecture: 0.94 (47/50) Romanesque architecture: 0.09 (5/54) Base model results saved to paligemma448_arch_finetune_styles/base_model_folder_eval_20250316_183525.csv === EVALUATION RESULTS COMPARISON === Fine-tuned model accuracy: 0.8440 Base model accuracy: 0.2400 Improvement: 0.6040 The checkpoint-176 performs better than the latest checkpoint by .02, even though the training loss is lower on the latest checkpoint. ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.0