import base64 import json import os import math from io import BytesIO from typing import Any, Dict, List, Literal, Optional, Union from urllib.parse import urlparse import requests import torch from PIL import Image from torch import nn from transformers import AutoProcessor, Qwen2VLForConditionalGeneration class Transformer(nn.Module): save_in_root: bool = True def __init__( self, model_name_or_path: str = 'llamaindex/vdr-2b-v1', processor_name_or_path: Optional[str] = None, max_pixels: int = 768 * 28 * 28, min_pixels: int = 1 * 28 * 28, dimension: int = 2048, max_seq_length: Optional[int] = None, model_args: Optional[Dict[str, Any]] = None, processor_args: Optional[Dict[str, Any]] = None, tokenizer_args: Optional[Dict[str, Any]] = None, config_args: Optional[Dict[str, Any]] = None, cache_dir: Optional[str] = None, backend: Literal['torch', 'onnx', 'openvino'] = 'torch', **kwargs, ) -> None: super(Transformer, self).__init__() if backend != 'torch': raise ValueError( f'Backend \'{backend}\' is not supported, please use \'torch\' instead' ) self.dimension = dimension self.max_pixels = max_pixels self.min_pixels = min_pixels self.max_seq_length = max_seq_length # Handle args model_kwargs = model_args or {} model_kwargs.update(kwargs) processor_kwargs = processor_args or {} processor_kwargs.update({ 'min_pixels': min_pixels, 'max_pixels': max_pixels, 'cache_dir': cache_dir }) # Initialize model self.model = Qwen2VLForConditionalGeneration.from_pretrained( model_name_or_path, cache_dir=cache_dir, **model_kwargs ).eval() # Initialize processor self.processor = AutoProcessor.from_pretrained( processor_name_or_path or model_name_or_path, **processor_kwargs ) # Set padding sides self.model.padding_side = "left" self.processor.tokenizer.padding_side = "left" # Store prompts self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>" self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>" # Try to infer max_seq_length if not provided if self.max_seq_length is None: if ( hasattr(self.model, 'config') and hasattr(self.model.config, 'max_position_embeddings') and hasattr(self.processor.tokenizer, 'model_max_length') ): self.max_seq_length = min( self.model.config.max_position_embeddings, self.processor.tokenizer.model_max_length, ) def _smart_resize(self, height: int, width: int) -> tuple[int, int]: h_bar = max(28, self._round_by_factor(height, 28)) w_bar = max(28, self._round_by_factor(width, 28)) if h_bar * w_bar > self.max_pixels: beta = math.sqrt((height * width) / self.max_pixels) h_bar = self._floor_by_factor(height / beta, 28) w_bar = self._floor_by_factor(width / beta, 28) elif h_bar * w_bar < self.min_pixels: beta = math.sqrt(self.min_pixels / (height * width)) h_bar = self._ceil_by_factor(height * beta, 28) w_bar = self._ceil_by_factor(width * beta, 28) return w_bar, h_bar @staticmethod def _round_by_factor(number: float, factor: int) -> int: return round(number / factor) * factor @staticmethod def _ceil_by_factor(number: float, factor: int) -> int: return math.ceil(number / factor) * factor @staticmethod def _floor_by_factor(number: float, factor: int) -> int: return math.floor(number / factor) * factor def _resize_image(self, image: Image.Image) -> Image.Image: new_size = self._smart_resize(image.height, image.width) return image.resize(new_size) @staticmethod def _decode_data_image(data_image_str: str) -> Image.Image: header, data = data_image_str.split(',', 1) image_data = base64.b64decode(data) return Image.open(BytesIO(image_data)) @staticmethod def _is_valid_url(url: str) -> bool: try: result = urlparse(url) # Check if scheme and netloc are present and scheme is http/https return all([result.scheme in ('http', 'https'), result.netloc]) except Exception: return False @staticmethod def _is_safe_path(path: str) -> bool: try: # Convert to absolute path and normalize abs_path = os.path.abspath(os.path.normpath(path)) # Check if file exists and is a regular file (not a directory or special file) return os.path.isfile(abs_path) except Exception: return False @staticmethod def _load_image_from_url(url: str) -> Image.Image: try: response = requests.get( url, stream=True, timeout=10, # Add timeout headers={'User-Agent': 'Mozilla/5.0'} # Add user agent ) response.raise_for_status() # Check content type content_type = response.headers.get('content-type', '') if not content_type.startswith('image/'): raise ValueError(f"Invalid content type: {content_type}") # Limit file size (e.g., 10MB) content = BytesIO() size = 0 max_size = 10 * 1024 * 1024 # 10MB for chunk in response.iter_content(chunk_size=8192): size += len(chunk) if size > max_size: raise ValueError("File too large") content.write(chunk) content.seek(0) return Image.open(content) except Exception as e: raise ValueError(f"Failed to load image from URL: {str(e)}") @staticmethod def _load_image_from_path(image_path: str) -> Image.Image: try: # Convert to absolute path and normalize abs_path = os.path.abspath(os.path.normpath(image_path)) # Check file size before loading file_size = os.path.getsize(abs_path) max_size = 10 * 1024 * 1024 # 10MB if file_size > max_size: raise ValueError("File too large") with Image.open(abs_path) as img: # Make a copy to ensure file handle is closed return img.copy() except Exception as e: raise ValueError(f"Failed to load image from path: {str(e)}") @staticmethod def _load_image_from_bytes(image_bytes: bytes) -> Image.Image: try: # Check size if len(image_bytes) > 10 * 1024 * 1024: # 10MB raise ValueError("Image data too large") return Image.open(BytesIO(image_bytes)) except Exception as e: raise ValueError(f"Failed to load image from bytes: {str(e)}") def _process_input(self, texts: List[Union[str, Image.Image, bytes]]) -> tuple[List[str], List[Image.Image]]: processed_texts = [] processed_images = [] dummy_image = Image.new('RGB', (56, 56)) for sample in texts: if isinstance(sample, str): # Check if the string is a valid URL if self._is_valid_url(sample): try: img = self._load_image_from_url(sample) processed_texts.append(self.document_prompt) processed_images.append(self._resize_image(img)) except Exception as e: # If URL loading fails, treat as regular text processed_texts.append(self.query_prompt % sample) processed_images.append(dummy_image) # Check if the string is a valid file path elif self._is_safe_path(sample): try: img = self._load_image_from_path(sample) processed_texts.append(self.document_prompt) processed_images.append(self._resize_image(img)) except Exception as e: # If image loading fails, treat as regular text processed_texts.append(self.query_prompt % sample) processed_images.append(dummy_image) else: # Regular text query processed_texts.append(self.query_prompt % sample) processed_images.append(dummy_image) elif isinstance(sample, Image.Image): processed_texts.append(self.document_prompt) processed_images.append(self._resize_image(sample)) elif isinstance(sample, bytes): try: img = self._load_image_from_bytes(sample) processed_texts.append(self.document_prompt) processed_images.append(self._resize_image(img)) except Exception as e: # If bytes can't be converted to image, use dummy processed_texts.append(self.document_prompt) processed_images.append(dummy_image) return processed_texts, processed_images def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: cache_position = torch.arange(0, features['input_ids'].shape[1]) inputs = self.model.prepare_inputs_for_generation( **features, cache_position=cache_position, use_cache=False ) # ensure inputs are on the same device as the model device = next(self.model.parameters()).device inputs = {k: v.to(device) for k, v in inputs.items() if isinstance(v, torch.Tensor)} with torch.no_grad(): output = self.model( **inputs, return_dict=True, output_hidden_states=True ) embeddings = output.hidden_states[-1][:, -1] features['sentence_embedding'] = torch.nn.functional.normalize( embeddings[:, :self.dimension], p=2, dim=-1 ) return features def tokenize(self, texts: List[Union[str, Image.Image, bytes]], padding: str = 'longest') -> Dict[str, torch.Tensor]: processed_texts, processed_images = self._process_input(texts) return self.processor( text=processed_texts, images=processed_images, videos=None, padding=padding, return_tensors='pt' ) def save(self, output_path: str, safe_serialization: bool = True) -> None: """Save the model, tokenizer and processor to the given path.""" self.model.save_pretrained(output_path, safe_serialization=safe_serialization) self.processor.save_pretrained(output_path) # Save the configuration config = { 'model_name_or_path': output_path, 'max_pixels': self.max_pixels, 'min_pixels': self.min_pixels, 'dimension': self.dimension, 'max_seq_length': self.max_seq_length, } config_path = os.path.join(output_path, 'sentence_bert_config.json') with open(config_path, 'w') as f: json.dump(config, f) @staticmethod def load(input_path: str) -> 'Transformer': """Load a saved model from the given path.""" # Load configuration config_path = os.path.join(input_path, 'sentence_bert_config.json') if os.path.exists(config_path): with open(config_path) as f: config = json.load(f) else: config = {'model_name_or_path': input_path} return Transformer(**config)