---
license: apache-2.0
language:
- en
base_model:
- MrLight/dse-qwen2-2b-mrl-v1
tags:
- transformers
- Qwen2-VL
---
# vdr-2b-v1
![](cover.png)
vdr-2b-v1 is an english only embedding model designed for visual document retrieval. It encodes document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich multilingual documents without the need for any OCR, data extraction pipelines, chunking...
- **Trained on the 🇬🇧 English vdr-multi-train subset:** extensive training dataset of 100k high-quality english samples.
- **Low VRAM and Faster Inference**: achieves better results on synthetic Vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage.
- **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality.
The multilingual version is available [here](https://huggingface.co/llamaindex/vdr-2b-multi-v1). To know more about both models, read the [announcement blogpost](https://huggingface.co/blog/marco/vdr-2b-multilingual).
# Usage
The model uses bf16 tensors and allocates ~4.4GB of VRAM when loaded. You can easily run inference and generate embeddings using 768 image patches and a batch size of 16 even on a cheap NVIDIA T4 GPU. This table reports the memory footprint (GB) under conditions of different batch sizes with HuggingFace Transformers and maximum 768 image patches.
| Batch Size | GPU Memory (GB) |
|------------|-----------------|
| 4 | 6.9 |
| 8 | 8.8 |
| 16 | 11.5 |
| 32 | 19.7 |
You can generate embeddings with this model in many different ways:
via LlamaIndex
```bash
pip install -U llama-index-embeddings-huggingface
```
```python
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
model = HuggingFaceEmbedding(
model_name="llamaindex/vdr-2b-v1",
device="mps",
trust_remote_code=True,
)
embeddings = model.get_image_embedding("image.png")
```
via HuggingFace Transformers
```python
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import math
# more pixels -> better embeddings -> more VRAM -> slower inference
# From my experience, 768 image patches is the right spot for compute efficient embeddings.
max_pixels = 768 * 28 * 28
min_pixels = 1 * 28 * 28
# Load the embedding model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
'llamaindex/vdr-2b-v1',
# These are the recommended kwargs for the model, but change them as needed
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="cuda:0"
).eval()
processor = AutoProcessor.from_pretrained(
'llamaindex/vdr-2b-v1',
min_pixels=min_pixels,
max_pixels=max_pixels
)
model.padding_side = "left"
processor.tokenizer.padding_side = "left"
document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
```
**Encode queries**
```python
def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
"""
Encode a list of queries into a tensor of embeddings.
Args:
queries: A list of strings, each representing a query.
dimension: The desired dimension of the output embeddings.
Returns:
A tensor of shape (num_queries, dimension) containing the encoded queries.
"""
dummy_image = Image.new('RGB', (56, 56))
inputs = processor(
text=[query_prompt % x for x in queries],
images=[dummy_image for _ in queries],
videos=None,
padding='longest',
return_tensors='pt'
).to('cuda:0')
cache_position = torch.arange(0, len(queries))
inputs = model.prepare_inputs_for_generation(
**inputs, cache_position=cache_position, use_cache=False)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```
**Encode documents**
```python
def round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
def ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
def floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def smart_resize(height: int, width: int) -> tuple[int, int]:
h_bar = max(28, round_by_factor(height, 28))
w_bar = max(28, round_by_factor(width, 28))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, 28)
w_bar = floor_by_factor(width / beta, 28)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, 28)
w_bar = ceil_by_factor(width * beta, 28)
return w_bar, h_bar
def resize(image: Image.Image):
new_size = smart_resize(image.height, image.width)
return image.resize(new_size)
def encode_documents(documents: list[Image.Image], dimension: int):
"""
Encode a list of images into a tensor of embeddings.
Args:
documents: A list of PIL Image objects.
dimension: The desired dimension of the output embeddings.
Returns:
A tensor of shape (num_documents, dimension) containing the encoded images.
"""
inputs = processor(
text=[document_prompt] * len(documents),
images=[resize(x) for x in documents],
videos=None,
padding='longest',
return_tensors='pt'
).to('cuda:0')
cache_position = torch.arange(0, len(queries))
inputs = model.prepare_inputs_for_generation(
**inputs, cache_position=cache_position, use_cache=False)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```
via SentenceTransformers
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(
model_name_or_path="llamaindex/vdr-2b-v1",
device="cuda",
trust_remote_code=True,
# These are the recommended kwargs for the model, but change them as needed if you don't have CUDA
model_kwargs={
"torch_dtype": torch.bfloat16,
"device_map": "cuda:0",
"attn_implementation": "flash_attention_2"
},
)
embeddings = model.encode("image.png")
```
# Training
The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) english subset that consinsists of 100k high quality samples. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.
# Results
The model has been evaluated on the Vidore benchmark. All evaluations are performed by calculating **NDCG@5** scores using an image resolution that can be represented with **maximum 768 tokens**.
On the full Vidore benchmark (evaluated with 768 image tokens), both the multilingual and the english-only version performs better than the base model.
| | **Avg** | **shiftproject** | **government** | **healthcare** | **energy** | **ai** | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** |
|---------------------|----------|------------------|----------------|----------------|------------|----------|------------|-------------|------------|-------------|--------------|
| dse-qwen2-2b-mrl-v1 | 83.6 | 79.8 | 95.7 | 96.9 | 92 | 98.2 | 56.3 | **85.2** | 53.9 | 87.5 | 90.3 |
| vdr-2b-multi-v1 | 84.0 | 82.4 | 95.5 | 96.5 | 91.2 | **98.5** | **58.5** | 84.7 | 53.6 | 87.1 | **92.2** |
| vdr-2b-v1 | **84.3** | **83.4** | **96.9** | **97.2** | **92.6** | 96.8 | 57.4 | 85.1 | **54.1** | **87.9** | 91.3 |
![](chart.png)
| | Avg | shiftproject | government | healthcare | energy | ai |
|-----------------------------------------|----------|--------------|------------|------------|----------|----------|
| dse-qwen2-2b-mrl-v1 (2560 image tokens) | 93.0 | 82 | 96 | 96.4 | **92.9** | **97.5** |
| vdr-2b-v1 (768 image tokens) | **93.4** | **83.4** | **96.9** | **97.2** | 92.6 | 96.8 |
vdr-2b-v1 matches the performance of the base model on vidore synthetic datasets, while only using 30% of the image tokens (768 vs. 2560). This results in 3x faster inference and much lower VRAM usage.