Image-Text-to-Text
sentence-transformers
Safetensors
Transformers
qwen2_vl
Qwen2-VL
conversational
File size: 5,464 Bytes
6187d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union

import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

class Transformer(nn.Module):
    save_in_root: bool = True
    
    def __init__(
        self,
        model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
        processor_name_or_path: Optional[str] = None,
        max_pixels: int = 768 * 28 * 28,
        min_pixels: int = 1 * 28 * 28,
        dimension: int = 2048,
        cache_dir: Optional[str] = None,
        device: str = 'cuda:0',
        **kwargs,
    ) -> None:
        super(Transformer, self).__init__()
        
        self.device = device
        self.dimension = dimension
        self.max_pixels = max_pixels
        self.min_pixels = min_pixels
        
        # Initialize model
        self.model = Qwen2VLForConditionalGeneration.from_pretrained(
            model_name_or_path,
            attn_implementation="flash_attention_2",
            torch_dtype=torch.bfloat16,
            device_map=device,
            cache_dir=cache_dir,
            **kwargs
        ).eval()

        # Initialize processor
        self.processor = AutoProcessor.from_pretrained(
            processor_name_or_path or model_name_or_path,
            min_pixels=min_pixels,
            max_pixels=max_pixels,
            cache_dir=cache_dir
        )

        self.model.padding_side = "left"
        self.processor.tokenizer.padding_side = "left"

        self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
        self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"

    def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
        h_bar = max(28, self._round_by_factor(height, 28))
        w_bar = max(28, self._round_by_factor(width, 28))
        if h_bar * w_bar > self.max_pixels:
            beta = math.sqrt((height * width) / self.max_pixels)
            h_bar = self._floor_by_factor(height / beta, 28)
            w_bar = self._floor_by_factor(width / beta, 28)
        elif h_bar * w_bar < self.min_pixels:
            beta = math.sqrt(self.min_pixels / (height * width))
            h_bar = self._ceil_by_factor(height * beta, 28)
            w_bar = self._ceil_by_factor(width * beta, 28)
        return w_bar, h_bar

    @staticmethod
    def _round_by_factor(number: float, factor: int) -> int:
        return round(number / factor) * factor

    @staticmethod
    def _ceil_by_factor(number: float, factor: int) -> int:
        return math.ceil(number / factor) * factor

    @staticmethod
    def _floor_by_factor(number: float, factor: int) -> int:
        return math.floor(number / factor) * factor

    def _resize_image(self, image: Image.Image) -> Image.Image:
        new_size = self._smart_resize(image.height, image.width)
        return image.resize(new_size)

    @staticmethod
    def _decode_data_image(data_image_str: str) -> Image.Image:
        header, data = data_image_str.split(',', 1)
        image_data = base64.b64decode(data)
        return Image.open(BytesIO(image_data))

    def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
        processed_texts = []
        processed_images = []
        dummy_image = Image.new('RGB', (56, 56))

        for sample in texts:
            if isinstance(sample, str):
                processed_texts.append(self.query_prompt % sample)
                processed_images.append(dummy_image)
            elif isinstance(sample, Image.Image):
                processed_texts.append(self.document_prompt)
                processed_images.append(self._resize_image(sample))

        return processed_texts, processed_images

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        cache_position = torch.arange(0, features['input_ids'].shape[0])
        inputs = self.model.prepare_inputs_for_generation(
            **features, cache_position=cache_position, use_cache=False
        )

        with torch.no_grad():
            output = self.model(
                **inputs,
                return_dict=True,
                output_hidden_states=True
            )

        embeddings = output.hidden_states[-1][:, -1]
        features['sentence_embedding'] = torch.nn.functional.normalize(
            embeddings[:, :self.dimension], p=2, dim=-1
        )
        return features

    def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
        processed_texts, processed_images = self._process_input(texts)
        
        inputs = self.processor(
            text=processed_texts,
            images=processed_images,
            videos=None,
            padding=padding,
            return_tensors='pt'
        )
        
        return {k: v.to(self.device) for k, v in inputs.items()}

    def save(self, output_path: str, safe_serialization: bool = True) -> None:
        self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
        self.processor.save_pretrained(output_path)