File size: 5,464 Bytes
			
			| 6187d4b | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union
import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
class Transformer(nn.Module):
    save_in_root: bool = True
    
    def __init__(
        self,
        model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
        processor_name_or_path: Optional[str] = None,
        max_pixels: int = 768 * 28 * 28,
        min_pixels: int = 1 * 28 * 28,
        dimension: int = 2048,
        cache_dir: Optional[str] = None,
        device: str = 'cuda:0',
        **kwargs,
    ) -> None:
        super(Transformer, self).__init__()
        
        self.device = device
        self.dimension = dimension
        self.max_pixels = max_pixels
        self.min_pixels = min_pixels
        
        # Initialize model
        self.model = Qwen2VLForConditionalGeneration.from_pretrained(
            model_name_or_path,
            attn_implementation="flash_attention_2",
            torch_dtype=torch.bfloat16,
            device_map=device,
            cache_dir=cache_dir,
            **kwargs
        ).eval()
        # Initialize processor
        self.processor = AutoProcessor.from_pretrained(
            processor_name_or_path or model_name_or_path,
            min_pixels=min_pixels,
            max_pixels=max_pixels,
            cache_dir=cache_dir
        )
        self.model.padding_side = "left"
        self.processor.tokenizer.padding_side = "left"
        self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
        self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
    def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
        h_bar = max(28, self._round_by_factor(height, 28))
        w_bar = max(28, self._round_by_factor(width, 28))
        if h_bar * w_bar > self.max_pixels:
            beta = math.sqrt((height * width) / self.max_pixels)
            h_bar = self._floor_by_factor(height / beta, 28)
            w_bar = self._floor_by_factor(width / beta, 28)
        elif h_bar * w_bar < self.min_pixels:
            beta = math.sqrt(self.min_pixels / (height * width))
            h_bar = self._ceil_by_factor(height * beta, 28)
            w_bar = self._ceil_by_factor(width * beta, 28)
        return w_bar, h_bar
    @staticmethod
    def _round_by_factor(number: float, factor: int) -> int:
        return round(number / factor) * factor
    @staticmethod
    def _ceil_by_factor(number: float, factor: int) -> int:
        return math.ceil(number / factor) * factor
    @staticmethod
    def _floor_by_factor(number: float, factor: int) -> int:
        return math.floor(number / factor) * factor
    def _resize_image(self, image: Image.Image) -> Image.Image:
        new_size = self._smart_resize(image.height, image.width)
        return image.resize(new_size)
    @staticmethod
    def _decode_data_image(data_image_str: str) -> Image.Image:
        header, data = data_image_str.split(',', 1)
        image_data = base64.b64decode(data)
        return Image.open(BytesIO(image_data))
    def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
        processed_texts = []
        processed_images = []
        dummy_image = Image.new('RGB', (56, 56))
        for sample in texts:
            if isinstance(sample, str):
                processed_texts.append(self.query_prompt % sample)
                processed_images.append(dummy_image)
            elif isinstance(sample, Image.Image):
                processed_texts.append(self.document_prompt)
                processed_images.append(self._resize_image(sample))
        return processed_texts, processed_images
    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        cache_position = torch.arange(0, features['input_ids'].shape[0])
        inputs = self.model.prepare_inputs_for_generation(
            **features, cache_position=cache_position, use_cache=False
        )
        with torch.no_grad():
            output = self.model(
                **inputs,
                return_dict=True,
                output_hidden_states=True
            )
        embeddings = output.hidden_states[-1][:, -1]
        features['sentence_embedding'] = torch.nn.functional.normalize(
            embeddings[:, :self.dimension], p=2, dim=-1
        )
        return features
    def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
        processed_texts, processed_images = self._process_input(texts)
        
        inputs = self.processor(
            text=processed_texts,
            images=processed_images,
            videos=None,
            padding=padding,
            return_tensors='pt'
        )
        
        return {k: v.to(self.device) for k, v in inputs.items()}
    def save(self, output_path: str, safe_serialization: bool = True) -> None:
        self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
        self.processor.save_pretrained(output_path) | 
