# Example script for using the yolov8_x model from Hugging Face import torch import cv2 import numpy as np from PIL import Image from transformers import AutoImageProcessor, AutoModelForObjectDetection # Load model and processor model = AutoModelForObjectDetection.from_pretrained("lkk688/yolov8x-model") processor = AutoImageProcessor.from_pretrained("lkk688/yolov8x-model") # Function to run inference on an image def detect_objects(image_path, confidence_threshold=0.25): # Load image image = Image.open(image_path).convert("RGB") # Process image inputs = processor(images=image, return_tensors="pt") # Run inference with torch.no_grad(): outputs = model(**inputs) # Post-process outputs target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection( outputs, threshold=confidence_threshold, target_sizes=target_sizes )[0] # Print results for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] print( f"Detected {model.config.id2label[label.item()]} with confidence " f"{round(score.item(), 3)} at location {box}" ) return results # Example usage if __name__ == "__main__": # Replace with your image path image_path = "path/to/your/image.jpg" detect_objects(image_path)