File size: 3,224 Bytes
45c2a2a acaafe0 9fcf446 9188e44 acaafe0 1d5a947 acaafe0 9fcf446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
---
# 🌐 WebThinker-R1-32B
<div align="left" style="line-height: 1;">
<a href="https://github.com/RUC-NLPIR/WebThinker" target="_blank" style="margin: 2px;">
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-WebThinker-blue?logo=github" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://arxiv.org/abs/2504.21776" target="_blank" style="margin: 2px;">
<img alt="Paper" src="https://img.shields.io/badge/Paper-arXiv-b5212f.svg?logo=arxiv" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/papers/2504.21776" target="_blank" style="margin: 2px;">
<img alt="Paper" src="https://img.shields.io/badge/Paper-Hugging%20Face-yellow?logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://opensource.org/licenses/Apache-2.0" target="_blank" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/LICENSE-Apache_2.0-green.svg" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
## Overview
WebThinker-R1-32B is part of the WebThinker series that enables large reasoning models to autonomously search, explore web pages, and draft research reports within their thinking process. This 32B parameter model provides deep research capabilities through:
- **Deep Web Exploration**: Enables autonomous web searches and page navigation by clicking interactive elements to extract relevant information while maintaining reasoning coherence
- **Autonomous Think-Search-and-Draft**: Integrates real-time knowledge seeking with report generation, allowing the model to draft sections as information is gathered
- **RL-based Training**: Leverages iterative online DPO training with preference pairs constructed from reasoning trajectories to optimize end-to-end performance
## Related Models
- [WebThinker-QwQ-32B](https://huggingface.co/lixiaoxi45/WebThinker-QwQ-32B)
- [WebThinker-R1-7B](https://huggingface.co/lixiaoxi45/WebThinker-R1-7B)
- [WebThinker-R1-14B](https://huggingface.co/lixiaoxi45/WebThinker-R1-14B)
- [WebThinker-R1-32B](https://huggingface.co/lixiaoxi45/WebThinker-R1-32B) (this model)
## Usage
This model can be used for:
- Complex problem solving requiring external knowledge
- Scientific research report generation
- Open-ended reasoning tasks
## Citation
```bibtex
@article{Li2025WebThinker,
author = {Xiaoxi Li and
Jiajie Jin and
Guanting Dong and
Hongjin Qian and
Yutao Zhu and
Yongkang Wu and
Ji{-}Rong Wen and
Zhicheng Dou},
title = {WebThinker: Empowering Large Reasoning Models with Deep Research Capability},
journal = {CoRR},
volume = {abs/2504.21776},
year = {2025},
url = {https://arxiv.org/abs/2504.21776},
doi = {10.48550/ARXIV.2504.21776},
eprinttype = {arXiv},
eprint = {2504.21776}
}
```
## License
This model is released under the Apache License 2.0.
## Contact
For any questions or feedback, please reach out to us at [[email protected]](mailto:[email protected]).
|