nielsr HF Staff commited on
Commit
4772908
·
verified ·
1 Parent(s): a5fef77

Improve model card: add metadata, paper abstract, and code link

Browse files

This PR improves the model card by adding the following:

* Paper abstract and link to the paper
* Link to the code repository
* Pipeline tag: `text-generation`
* Library name: `transformers`
* Correct license: `mit`

Files changed (1) hide show
  1. README.md +32 -6
README.md CHANGED
@@ -1,6 +1,9 @@
1
  ---
2
- license: apache-2.0
 
 
3
  ---
 
4
  # 🌐 WebThinker-R1-14B
5
 
6
  <div align="left" style="line-height: 1;">
@@ -13,11 +16,35 @@ license: apache-2.0
13
  <a href="https://huggingface.co/papers/2504.21776" target="_blank" style="margin: 2px;">
14
  <img alt="Paper" src="https://img.shields.io/badge/Paper-Hugging%20Face-yellow?logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
15
  </a>
16
- <a href="https://opensource.org/licenses/Apache-2.0" target="_blank" style="margin: 2px;">
17
- <img alt="License" src="https://img.shields.io/badge/LICENSE-Apache_2.0-green.svg" style="display: inline-block; vertical-align: middle;"/>
18
  </a>
19
  </div>
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Overview
22
 
23
  WebThinker-R1-14B is part of the WebThinker series that enables large reasoning models to autonomously search, explore web pages, and draft research reports within their thinking process. This 14B parameter model provides deep research capabilities through:
@@ -65,9 +92,8 @@ This model can be used for:
65
 
66
  ## License
67
 
68
- This model is released under the Apache License 2.0.
69
 
70
  ## Contact
71
 
72
- For any questions or feedback, please reach out to us at [[email protected]](mailto:[email protected]).
73
-
 
1
  ---
2
+ license: mit
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
  ---
6
+
7
  # 🌐 WebThinker-R1-14B
8
 
9
  <div align="left" style="line-height: 1;">
 
16
  <a href="https://huggingface.co/papers/2504.21776" target="_blank" style="margin: 2px;">
17
  <img alt="Paper" src="https://img.shields.io/badge/Paper-Hugging%20Face-yellow?logo=huggingface" style="display: inline-block; vertical-align: middle;"/>
18
  </a>
19
+ <a href="https://opensource.org/licenses/MIT" target="_blank" style="margin: 2px;">
20
+ <img alt="License" src="https://img.shields.io/badge/LICENSE-MIT-green.svg" style="display: inline-block; vertical-align: middle;"/>
21
  </a>
22
  </div>
23
 
24
+ ## WebThinker: Empowering Large Reasoning Models with Deep Research Capability
25
+
26
+ Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate
27
+ impressive long-horizon reasoning capabilities. However, their reliance on
28
+ static internal knowledge limits their performance on complex,
29
+ knowledge-intensive tasks and hinders their ability to produce comprehensive
30
+ research reports requiring synthesis of diverse web information. To address
31
+ this, we propose WebThinker, a deep research agent that empowers LRMs
32
+ to autonomously search the web, navigate web pages, and draft research reports
33
+ during the reasoning process. WebThinker integrates a Deep Web
34
+ Explorer module, enabling LRMs to dynamically search, navigate, and extract
35
+ information from the web when encountering knowledge gaps. It also employs an
36
+ Autonomous Think-Search-and-Draft strategy, allowing the model to
37
+ seamlessly interleave reasoning, information gathering, and report writing in
38
+ real time. To further enhance research tool utilization, we introduce an
39
+ RL-based training strategy via iterative online Direct Preference
40
+ Optimization (DPO). Extensive experiments on complex reasoning benchmarks
41
+ (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive)
42
+ demonstrate that WebThinker significantly outperforms existing methods and
43
+ strong proprietary systems. Our approach enhances LRM reliability and
44
+ applicability in complex scenarios, paving the way for more capable and
45
+ versatile deep research systems.
46
+
47
+
48
  ## Overview
49
 
50
  WebThinker-R1-14B is part of the WebThinker series that enables large reasoning models to autonomously search, explore web pages, and draft research reports within their thinking process. This 14B parameter model provides deep research capabilities through:
 
92
 
93
  ## License
94
 
95
+ This model is released under the MIT License.
96
 
97
  ## Contact
98
 
99
+ For any questions or feedback, please reach out to us at [[email protected]](mailto:[email protected]).