initial upload
Browse filesA very tiny BERT model trained on top gene rankings of more than 10 million cells.
- checkpoint/checkpoint-154000/config.json +29 -0
- checkpoint/checkpoint-154000/generation_config.json +5 -0
- checkpoint/checkpoint-154000/model.safetensors +3 -0
- checkpoint/checkpoint-154000/special_tokens_map.json +37 -0
- checkpoint/checkpoint-154000/tokenizer.json +0 -0
- checkpoint/checkpoint-154000/tokenizer_config.json +52 -0
- checkpoint/checkpoint-154000/trainer_state.json +0 -0
- checkpoint/runs/Oct22_09-35-03_localhost.tmu/events.out.tfevents.1729561471.localhost.tmu.57176.0 +3 -0
- checkpoint/runs/Oct22_10-54-47_localhost.tmu/events.out.tfevents.1729566170.localhost.tmu.17941.0 +3 -0
- checkpoint/runs/Oct22_12-47-27_localhost.tmu/events.out.tfevents.1729572989.localhost.tmu.113215.0 +3 -0
- checkpoint/runs/Oct22_16-30-26_localhost.tmu/events.out.tfevents.1729586363.localhost.tmu.100709.0 +3 -0
- config.json +31 -0
- tokenizer/bertbuildtokenizer.py +79 -0
- tokenizer/special_tokens_map.json +1 -0
- tokenizer/tokenizer.json +0 -0
- tokenizer/tokenizer_config.json +1 -0
- train.py +186 -0
- train.sh +26 -0
checkpoint/checkpoint-154000/config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "config.json",
|
3 |
+
"architectures": [
|
4 |
+
"BertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"cls_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 256,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1024,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"mask_token_id": 4,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 8,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"sep_token_id": 3,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.2",
|
25 |
+
"type_vocab_size": 2,
|
26 |
+
"unk_token_id": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 21051
|
29 |
+
}
|
checkpoint/checkpoint-154000/generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"pad_token_id": 0,
|
4 |
+
"transformers_version": "4.41.2"
|
5 |
+
}
|
checkpoint/checkpoint-154000/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77938668f182079c4bec8df74124a9535a9a2fdd96fbf24233f1d5ec0832ef9f
|
3 |
+
size 41400444
|
checkpoint/checkpoint-154000/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
checkpoint/checkpoint-154000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint/checkpoint-154000/tokenizer_config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"mask_token": "[MASK]",
|
47 |
+
"model_max_length": 512,
|
48 |
+
"pad_token": "[PAD]",
|
49 |
+
"sep_token": "[SEP]",
|
50 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
51 |
+
"unk_token": "[UNK]"
|
52 |
+
}
|
checkpoint/checkpoint-154000/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint/runs/Oct22_09-35-03_localhost.tmu/events.out.tfevents.1729561471.localhost.tmu.57176.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e864b0ccb62ecc71ba965ce6b1bbd551930aeb7487716a794afa961986a2cfed
|
3 |
+
size 177822
|
checkpoint/runs/Oct22_10-54-47_localhost.tmu/events.out.tfevents.1729566170.localhost.tmu.17941.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:843de1fc19a3c982187336d88cdecab4642bac70e8124c942a1e54b0122d3cc1
|
3 |
+
size 178081
|
checkpoint/runs/Oct22_12-47-27_localhost.tmu/events.out.tfevents.1729572989.localhost.tmu.113215.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ddb20078a677088da7ba8baa7938866fc481ecce7b469a873a17e357b15851a
|
3 |
+
size 193254
|
checkpoint/runs/Oct22_16-30-26_localhost.tmu/events.out.tfevents.1729586363.localhost.tmu.100709.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c047e480675bae4d8b28b59462fdef282763dc85ed34c045057a7490eb75aff6
|
3 |
+
size 2800710
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-1536-8-16-2023Feb25/config.json",
|
3 |
+
"_attn_implementation": "sdpa",
|
4 |
+
"architectures": [
|
5 |
+
"BertForMaskedLM"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"pad_token_id": 0,
|
10 |
+
"unk_token_id": 1,
|
11 |
+
"cls_token_id": 2,
|
12 |
+
"sep_token_id": 3,
|
13 |
+
"mask_token_id": 4,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.1,
|
16 |
+
"hidden_size": 256,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 1024,
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 8,
|
23 |
+
"num_hidden_layers": 6,
|
24 |
+
"position_embedding_type": "absolute",
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.25.0.dev0",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 21051
|
30 |
+
}
|
31 |
+
|
tokenizer/bertbuildtokenizer.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tokenizers import Tokenizer
|
2 |
+
from tokenizers.models import WordLevel
|
3 |
+
from tokenizers.trainers import WordLevelTrainer
|
4 |
+
from tokenizers.pre_tokenizers import Whitespace
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
from tokenizers.processors import TemplateProcessing
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
|
10 |
+
def build_tokenizer(files):
|
11 |
+
assert type(files) == list and len(files) > 0
|
12 |
+
|
13 |
+
# Build word-level tokenizer, i.e. tokenize sentences by whitespace.
|
14 |
+
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
|
15 |
+
trainer = WordLevelTrainer(special_tokens=["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"])
|
16 |
+
tokenizer.pre_tokenizer = Whitespace()
|
17 |
+
tokenizer.train(files, trainer)
|
18 |
+
|
19 |
+
return tokenizer
|
20 |
+
|
21 |
+
|
22 |
+
def tokenizer_from_file(tokenizer_file):
|
23 |
+
tokenizer = Tokenizer.from_file(tokenizer_file)
|
24 |
+
|
25 |
+
#sentinel_tokens = [(f"<extra_id_{i}>", tokenizer.token_to_id(f"<extra_id_{i}>")) for i in range(100)]
|
26 |
+
# For BERT, we want our tokenizer to automatically add special tokens, like "[CLS]" or "[SEP]".
|
27 |
+
# GPT des not requires [CLS] and [SEP] at pretraining while BERT requires them.
|
28 |
+
#+https://swethatanamala.github.io/2018/12/24/summary-of-bert-paper/
|
29 |
+
# GPT converges faster by adding [BOS] and [EOS] than without [BOS] and [EOS].
|
30 |
+
tokenizer.post_processor = TemplateProcessing(
|
31 |
+
single="[CLS] $A [SEP]", # BERT
|
32 |
+
##single="[BOS] $A [EOS]", # GPT
|
33 |
+
##single="$A </s>",
|
34 |
+
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
35 |
+
special_tokens=[
|
36 |
+
("[PAD]", tokenizer.token_to_id("[PAD]")),
|
37 |
+
("[UNK]", tokenizer.token_to_id("[UNK]")),
|
38 |
+
("[CLS]", tokenizer.token_to_id("[CLS]")),
|
39 |
+
("[SEP]", tokenizer.token_to_id("[SEP]")),
|
40 |
+
("[MASK]", tokenizer.token_to_id("[MASK]")),
|
41 |
+
],
|
42 |
+
)
|
43 |
+
|
44 |
+
# Instantiate with a tokenizer object
|
45 |
+
tokenizer = PreTrainedTokenizerFast(
|
46 |
+
tokenizer_object=tokenizer, model_max_length=512,
|
47 |
+
pad_token='[PAD]', unk_token='[UNK]', cls_token='[CLS]',
|
48 |
+
sep_token='[SEP]', mask_token='[MASK]')
|
49 |
+
|
50 |
+
return tokenizer
|
51 |
+
|
52 |
+
if not os.path.exists("tmp.json"):
|
53 |
+
tokenizer = build_tokenizer(files = ["gene_rank_merge_2021Aug25.txt", "../t5/t5finetune_data_flat.csv"])
|
54 |
+
tokenizer.save("tmp.json")
|
55 |
+
|
56 |
+
d=json.load(open("tmp.json"))
|
57 |
+
|
58 |
+
#for i in range(7, 107):
|
59 |
+
# d['added_tokens'].append({'id':i, 'special': True, 'content': f"<extra_id_{i-7}>",'single_word': False,'lstrip': False,'rstrip': False,'normalized': False})
|
60 |
+
|
61 |
+
vmax = 0
|
62 |
+
for k, v in d['model']['vocab'].items():
|
63 |
+
if v > vmax:
|
64 |
+
vmax = v
|
65 |
+
|
66 |
+
assert vmax + 1 == len(d['model']['vocab'])
|
67 |
+
|
68 |
+
for i in range(0, 100):
|
69 |
+
##d['model']['vocab'][f"extra_id_{i}"] = vmax + 1 + i
|
70 |
+
d['model']['vocab'][f"unused{i}"] = vmax + 1 + i
|
71 |
+
|
72 |
+
with open('bert.json','w') as f:
|
73 |
+
json.dump(d, f)
|
74 |
+
|
75 |
+
|
76 |
+
tk = tokenizer_from_file("bert.json")
|
77 |
+
tk.save_pretrained("berttokenizer")
|
78 |
+
|
79 |
+
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 512, "pad_token": "[PAD]", "unk_token": "[UNK]", "cls_token": "[CLS]", "sep_token": "[SEP]", "mask_token": "[MASK]", "tokenizer_class": "PreTrainedTokenizerFast"}
|
train.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import copy
|
16 |
+
import logging
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
import pathlib
|
19 |
+
from typing import Dict, Optional, Sequence
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import transformers
|
23 |
+
from torch.utils.data import Dataset
|
24 |
+
from transformers import Trainer
|
25 |
+
import numpy as np
|
26 |
+
import json
|
27 |
+
|
28 |
+
IGNORE_INDEX = -100
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class ModelArguments:
|
32 |
+
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class DataArguments:
|
37 |
+
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
|
38 |
+
|
39 |
+
|
40 |
+
@dataclass
|
41 |
+
class TrainingArguments(transformers.TrainingArguments):
|
42 |
+
cache_dir: Optional[str] = field(default=None)
|
43 |
+
optim: str = field(default="adamw_torch")
|
44 |
+
model_max_length: int = field(
|
45 |
+
default=8192,
|
46 |
+
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
|
47 |
+
)
|
48 |
+
|
49 |
+
local_rank = None
|
50 |
+
|
51 |
+
def rank0_print(*args):
|
52 |
+
if local_rank == 0:
|
53 |
+
print(*args)
|
54 |
+
|
55 |
+
def bert_masking(input_ids, random_tokens, mask_token_id, mask_prob=0.15):
|
56 |
+
assert len(input_ids) > 1
|
57 |
+
if isinstance(input_ids, list):
|
58 |
+
input_ids = np.array(input_ids)
|
59 |
+
elif isinstance(input_ids, torch.Tensor):
|
60 |
+
input_ids = input_ids.numpy()
|
61 |
+
elif isinstance(input_ids, np.ndarray):
|
62 |
+
pass
|
63 |
+
|
64 |
+
labels = np.full_like(input_ids, IGNORE_INDEX) # Initialize labels with -100 (ignore index for loss calculation)
|
65 |
+
|
66 |
+
# We exclude the first and last tokens from being masked
|
67 |
+
num_tokens = len(input_ids)
|
68 |
+
valid_indices = np.arange(1, num_tokens - 1) # Ignore the first (index 0) and last (index -1) tokens
|
69 |
+
|
70 |
+
# Determine the number of tokens to mask (15% of total valid tokens)
|
71 |
+
num_mask = int(np.ceil(mask_prob * len(valid_indices)))
|
72 |
+
|
73 |
+
# Randomly choose indices to mask from the valid indices
|
74 |
+
mask_indices = np.random.choice(valid_indices, num_mask, replace=False)
|
75 |
+
|
76 |
+
for idx in mask_indices:
|
77 |
+
prob = np.random.rand() # Generate a random number between 0 and 1
|
78 |
+
|
79 |
+
if prob < 0.8:
|
80 |
+
# 80% of the time, replace with [MASK] token
|
81 |
+
labels[idx] = input_ids[idx]
|
82 |
+
input_ids[idx] = mask_token_id
|
83 |
+
elif prob < 0.9:
|
84 |
+
# 10% of the time, replace with a random token
|
85 |
+
labels[idx] = input_ids[idx]
|
86 |
+
input_ids[idx] = np.random.choice(random_tokens)
|
87 |
+
else:
|
88 |
+
# 10% of the time, keep the original token (but predict it)
|
89 |
+
labels[idx] = input_ids[idx]
|
90 |
+
|
91 |
+
input_ids = torch.from_numpy(input_ids)
|
92 |
+
labels = torch.from_numpy(labels)
|
93 |
+
return dict(input_ids=input_ids, labels=labels)
|
94 |
+
|
95 |
+
def is_not_special_token(token_name):
|
96 |
+
unused = token_name.startswith("unused")
|
97 |
+
is_special_token = (token_name in ["[CLS]", "[MASK]", "[PAD]", "[UNK]"])
|
98 |
+
flag = ((not unused) and (not is_special_token))
|
99 |
+
return flag
|
100 |
+
|
101 |
+
class SupervisedDataset(Dataset):
|
102 |
+
"""Dataset for supervised fine-tuning."""
|
103 |
+
|
104 |
+
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizerFast):
|
105 |
+
super(SupervisedDataset, self).__init__()
|
106 |
+
logging.warning("Loading data...")
|
107 |
+
self.tokenizer = tokenizer
|
108 |
+
self.max_length = 64 # max number of genes
|
109 |
+
with open(data_path) as f:
|
110 |
+
self.list_data = [line.split()[0: self.max_length] for line in f if len(line.split()) >= self.max_length]
|
111 |
+
|
112 |
+
self.cached_input_ids = {}
|
113 |
+
self.random_tokens = [token_id for token_name, token_id in self.tokenizer.vocab.items() if is_not_special_token(token_name)]
|
114 |
+
|
115 |
+
def __len__(self):
|
116 |
+
return len(self.list_data)
|
117 |
+
|
118 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
119 |
+
if i in self.cached_input_ids:
|
120 |
+
input_ids = self.cached_input_ids[i]
|
121 |
+
else:
|
122 |
+
input_ids = self.tokenizer(self.list_data[i], is_split_into_words=True)["input_ids"]
|
123 |
+
self.cached_input_ids[i] = input_ids
|
124 |
+
|
125 |
+
inputs = bert_masking(input_ids, self.random_tokens, self.tokenizer.mask_token_id)
|
126 |
+
return inputs
|
127 |
+
|
128 |
+
@dataclass
|
129 |
+
class DataCollatorForSupervisedDataset(object):
|
130 |
+
"""Collate examples for supervised fine-tuning."""
|
131 |
+
|
132 |
+
tokenizer: transformers.PreTrainedTokenizerFast
|
133 |
+
|
134 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
135 |
+
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
|
136 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
137 |
+
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
138 |
+
)
|
139 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
|
140 |
+
return dict(
|
141 |
+
input_ids=input_ids,
|
142 |
+
labels=labels,
|
143 |
+
attention_mask=(input_ids.ne(self.tokenizer.pad_token_id)).long(),
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizerFast, data_args) -> Dict:
|
148 |
+
"""Make dataset and collator for supervised fine-tuning."""
|
149 |
+
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path)
|
150 |
+
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
151 |
+
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
|
152 |
+
|
153 |
+
|
154 |
+
def train():
|
155 |
+
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
156 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
157 |
+
|
158 |
+
#model = transformers.AutoModelForCausalLM.from_pretrained(
|
159 |
+
# model_args.model_name_or_path,
|
160 |
+
# cache_dir=training_args.cache_dir,
|
161 |
+
#)
|
162 |
+
config = transformers.AutoConfig.from_pretrained('config.json')
|
163 |
+
#model = transformers.OPTForCausalLM(config)
|
164 |
+
model = transformers.BertForMaskedLM(config)
|
165 |
+
|
166 |
+
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)/1e+6
|
167 |
+
rank0_print(model)
|
168 |
+
rank0_print(f"model_size: {model_size:.3f} Mb")
|
169 |
+
|
170 |
+
tokenizer = transformers.PreTrainedTokenizerFast.from_pretrained("tokenizer")
|
171 |
+
|
172 |
+
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
|
173 |
+
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
|
174 |
+
|
175 |
+
#trainer.train()
|
176 |
+
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
177 |
+
trainer.train(resume_from_checkpoint=True)
|
178 |
+
else:
|
179 |
+
trainer.train()
|
180 |
+
|
181 |
+
trainer.save_state()
|
182 |
+
trainer.save_model(output_dir=training_args.output_dir)
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
train()
|
train.sh
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export CUDA_VISIBLE_DEVICES=4,5
|
2 |
+
##--fsdp "full_shard auto_wrap" --fsdp_transformer_layer_cls_to_wrap 'OPTDecoderLayer' \
|
3 |
+
torchrun --nproc_per_node=2 --master_port=8060 train.py \
|
4 |
+
--data_path ../downstream_data/gene_ranking_20220803.txt \
|
5 |
+
--bf16 False \
|
6 |
+
--output_dir checkpoint \
|
7 |
+
--num_train_epochs 40 \
|
8 |
+
--per_device_train_batch_size 512 \
|
9 |
+
--per_device_eval_batch_size 4 \
|
10 |
+
--gradient_accumulation_steps 2 \
|
11 |
+
--evaluation_strategy "no" \
|
12 |
+
--save_strategy "steps" \
|
13 |
+
--save_steps 2000 \
|
14 |
+
--save_total_limit 1 \
|
15 |
+
--learning_rate 3e-4 \
|
16 |
+
--weight_decay 0.0 \
|
17 |
+
--warmup_ratio 0.03 \
|
18 |
+
--adam_beta1 0.90 \
|
19 |
+
--adam_beta2 0.95 \
|
20 |
+
--lr_scheduler_type "cosine" \
|
21 |
+
--logging_steps 10 \
|
22 |
+
--report_to tensorboard \
|
23 |
+
--tf32 True \
|
24 |
+
--dataloader_num_workers 2 \
|
25 |
+
--dataloader_persistent_workers True
|
26 |
+
|