Commit
·
d658af5
1
Parent(s):
8ce5a55
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: FLAN-T5_GLUE_finetuning_lr5e-5
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# FLAN-T5_GLUE_finetuning_lr5e-5
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0797
|
20 |
+
- Accuracy: 0.8794
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 64
|
41 |
+
- eval_batch_size: 64
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 5.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
51 |
+
| 0.141 | 0.17 | 2500 | 0.1083 | 0.8363 |
|
52 |
+
| 0.1096 | 0.34 | 5000 | 0.0986 | 0.8484 |
|
53 |
+
| 0.1029 | 0.51 | 7500 | 0.0919 | 0.8548 |
|
54 |
+
| 0.0994 | 0.68 | 10000 | 0.0895 | 0.8591 |
|
55 |
+
| 0.0956 | 0.85 | 12500 | 0.0871 | 0.8622 |
|
56 |
+
| 0.0938 | 1.02 | 15000 | 0.0862 | 0.8628 |
|
57 |
+
| 0.0849 | 1.18 | 17500 | 0.0845 | 0.8674 |
|
58 |
+
| 0.0845 | 1.35 | 20000 | 0.0849 | 0.8675 |
|
59 |
+
| 0.0837 | 1.52 | 22500 | 0.0835 | 0.8669 |
|
60 |
+
| 0.0826 | 1.69 | 25000 | 0.0838 | 0.871 |
|
61 |
+
| 0.0827 | 1.86 | 27500 | 0.0821 | 0.8711 |
|
62 |
+
| 0.0812 | 2.03 | 30000 | 0.0826 | 0.8709 |
|
63 |
+
| 0.0744 | 2.2 | 32500 | 0.0809 | 0.8747 |
|
64 |
+
| 0.0746 | 2.37 | 35000 | 0.0830 | 0.8728 |
|
65 |
+
| 0.0734 | 2.54 | 37500 | 0.0813 | 0.8741 |
|
66 |
+
| 0.0747 | 2.71 | 40000 | 0.0798 | 0.8755 |
|
67 |
+
| 0.0733 | 2.88 | 42500 | 0.0799 | 0.8753 |
|
68 |
+
| 0.0721 | 3.05 | 45000 | 0.0816 | 0.8755 |
|
69 |
+
| 0.0678 | 3.22 | 47500 | 0.0810 | 0.8774 |
|
70 |
+
| 0.0673 | 3.38 | 50000 | 0.0820 | 0.8759 |
|
71 |
+
| 0.0674 | 3.55 | 52500 | 0.0796 | 0.8774 |
|
72 |
+
| 0.0681 | 3.72 | 55000 | 0.0786 | 0.8783 |
|
73 |
+
| 0.0675 | 3.89 | 57500 | 0.0792 | 0.8785 |
|
74 |
+
| 0.066 | 4.06 | 60000 | 0.0794 | 0.879 |
|
75 |
+
| 0.0631 | 4.23 | 62500 | 0.0808 | 0.879 |
|
76 |
+
| 0.0638 | 4.4 | 65000 | 0.0804 | 0.8783 |
|
77 |
+
| 0.064 | 4.57 | 67500 | 0.0801 | 0.879 |
|
78 |
+
| 0.0637 | 4.74 | 70000 | 0.0801 | 0.8791 |
|
79 |
+
| 0.064 | 4.91 | 72500 | 0.0797 | 0.8794 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.26.1
|
85 |
+
- Pytorch 1.13.0+cu117
|
86 |
+
- Datasets 2.10.1
|
87 |
+
- Tokenizers 0.12.1
|