Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- merge
|
4 |
+
- mergekit
|
5 |
+
- lazymergekit
|
6 |
+
- argilla/CapybaraHermes-2.5-Mistral-7B
|
7 |
+
- WizardLM/WizardMath-7B-V1.1
|
8 |
+
base_model:
|
9 |
+
- argilla/CapybaraHermes-2.5-Mistral-7B
|
10 |
+
- WizardLM/WizardMath-7B-V1.1
|
11 |
+
---
|
12 |
+
|
13 |
+
# 試製-暮光-4x7B
|
14 |
+
|
15 |
+
試製-暮光-7B 是用[LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)融合以下模型生成的:
|
16 |
+
* [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B)
|
17 |
+
* [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1)
|
18 |
+
|
19 |
+
這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。
|
20 |
+
|
21 |
+
|
22 |
+
# shizhi-twilight-7B
|
23 |
+
|
24 |
+
shizhi-twilight-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
25 |
+
* [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B)
|
26 |
+
* [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1)
|
27 |
+
|
28 |
+
This is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method.
|
29 |
+
|
30 |
+
## 🧩 Configuration
|
31 |
+
|
32 |
+
```yaml
|
33 |
+
models:
|
34 |
+
- model: MediaTek-Research/Breeze-7B-Instruct-v0_1
|
35 |
+
# No parameters necessary for base model
|
36 |
+
- model: argilla/CapybaraHermes-2.5-Mistral-7B
|
37 |
+
parameters:
|
38 |
+
density: 0.53
|
39 |
+
weight: 0.65
|
40 |
+
- model: WizardLM/WizardMath-7B-V1.1
|
41 |
+
parameters:
|
42 |
+
density: 0.53
|
43 |
+
weight: 0.35
|
44 |
+
merge_method: dare_ties
|
45 |
+
base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1
|
46 |
+
parameters:
|
47 |
+
int8_mask: true
|
48 |
+
dtype: bfloat16
|
49 |
+
```
|
50 |
+
|
51 |
+
## 💻 Usage
|
52 |
+
|
53 |
+
```python
|
54 |
+
!pip install -qU transformers accelerate
|
55 |
+
|
56 |
+
from transformers import AutoTokenizer
|
57 |
+
import transformers
|
58 |
+
import torch
|
59 |
+
|
60 |
+
model = "lipcut/shizhi-twilight-7B"
|
61 |
+
messages = [{"role": "user", "content": "什麼是大型語言模型?"}]
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
64 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
65 |
+
pipeline = transformers.pipeline(
|
66 |
+
"text-generation",
|
67 |
+
model=model,
|
68 |
+
torch_dtype=torch.float16,
|
69 |
+
device_map="auto",
|
70 |
+
)
|
71 |
+
|
72 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
73 |
+
print(outputs[0]["generated_text"])
|
74 |
+
```
|