File size: 1,776 Bytes
a1c9af6
 
 
 
 
 
 
 
 
 
 
 
 
 
de46389
 
 
 
 
 
 
a1c9af6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: HiDream-ai/HiDream-I1-Dev
library_name: diffusers
license: apache-2.0
instance_prompt: a photo of sks dog
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# HiDream Image DreamBooth LoRA - linoyts/trained-hidream-lora

<Gallery />

## Model description

These are linoyts/trained-hidream-lora DreamBooth LoRA weights for HiDream-ai/HiDream-I1-Dev.

The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [HiDream Image diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_hidream.md).


## Trigger words

You should use `a photo of sks dog` to trigger the image generation.

## Download model

[Download the *.safetensors LoRA](linoyts/trained-hidream-lora/tree/main) in the Files & versions tab.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
TODO
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)


## Intended uses & limitations

#### How to use

```python
# TODO: add an example code snippet for running this diffusion pipeline
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]