File size: 2,821 Bytes
940f6d9
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc9160
 
 
 
 
 
 
940f6d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
base_model: HiDream-ai/HiDream-I1-Full
library_name: diffusers
license: mit
instance_prompt: a photo of sks dog
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
---

<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->


# HiDream Image DreamBooth LoRA - linoyts/dog-hidream-lora

<Gallery />

## Model description

These are linoyts/dog-hidream-lora DreamBooth LoRA weights for HiDream-ai/HiDream-I1-Full.

The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [HiDream Image diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_hidream.md).

## Trigger words

You should use `a photo of sks dog` to trigger the image generation.

## Download model

[Download the *.safetensors LoRA](linoyts/dog-hidream-lora/tree/main) in the Files & versions tab.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
    >>> import torch
    >>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
    >>> from diffusers import UniPCMultistepScheduler, HiDreamImagePipeline

    >>> scheduler = UniPCMultistepScheduler(
    ...     flow_shift=3.0, prediction_type="flow_prediction", use_flow_sigmas=True
    ... )

    >>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
    >>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
    ...     "meta-llama/Meta-Llama-3.1-8B-Instruct",
    ...     output_hidden_states=True,
    ...     output_attentions=True,
    ...     torch_dtype=torch.bfloat16,
    ... )

    >>> pipe = HiDreamImagePipeline.from_pretrained(
    ...     "HiDream-ai/HiDream-I1-Full",
    ...     scheduler=scheduler,
    ...     tokenizer_4=tokenizer_4,
    ...     text_encoder_4=text_encoder_4,
    ...     torch_dtype=torch.bfloat16,
    ... )
    >>> pipe.enable_model_cpu_offload()
    >>> pipe.load_lora_weights(f"linoyts/dog-hidream-lora")
    >>> image = pipe(f"a photo of sks dog").images[0]


```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)


## Intended uses & limitations

#### How to use

```python
# TODO: add an example code snippet for running this diffusion pipeline
```

#### Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

## Training details

[TODO: describe the data used to train the model]