--- tags: - mteb - sentence-similarity - sentence-transformers - Sentence Transformers - llama-cpp - gguf-my-repo language: - en license: mit base_model: thenlper/gte-large-zh model-index: - name: gte-large-zh results: - task: type: STS dataset: name: MTEB AFQMC type: C-MTEB/AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 48.94131905219026 - type: cos_sim_spearman value: 54.58261199731436 - type: euclidean_pearson value: 52.73929210805982 - type: euclidean_spearman value: 54.582632097533676 - type: manhattan_pearson value: 52.73123295724949 - type: manhattan_spearman value: 54.572941830465794 - task: type: STS dataset: name: MTEB ATEC type: C-MTEB/ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 47.292931669579005 - type: cos_sim_spearman value: 54.601019783506466 - type: euclidean_pearson value: 54.61393532658173 - type: euclidean_spearman value: 54.60101865708542 - type: manhattan_pearson value: 54.59369555606305 - type: manhattan_spearman value: 54.601098593646036 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.233999999999995 - type: f1 value: 45.68998446563349 - task: type: STS dataset: name: MTEB BQ type: C-MTEB/BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 62.55033151404683 - type: cos_sim_spearman value: 64.40573802644984 - type: euclidean_pearson value: 62.93453281081951 - type: euclidean_spearman value: 64.40574149035828 - type: manhattan_pearson value: 62.839969210895816 - type: manhattan_spearman value: 64.30837945045283 - task: type: Clustering dataset: name: MTEB CLSClusteringP2P type: C-MTEB/CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 42.098169316685045 - task: type: Clustering dataset: name: MTEB CLSClusteringS2S type: C-MTEB/CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 38.90716707051822 - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: None metrics: - type: map value: 86.09191911031553 - type: mrr value: 88.6747619047619 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: None metrics: - type: map value: 86.45781885502122 - type: mrr value: 89.01591269841269 - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval type: C-MTEB/CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 24.215 - type: map_at_10 value: 36.498000000000005 - type: map_at_100 value: 38.409 - type: map_at_1000 value: 38.524 - type: map_at_3 value: 32.428000000000004 - type: map_at_5 value: 34.664 - type: mrr_at_1 value: 36.834 - type: mrr_at_10 value: 45.196 - type: mrr_at_100 value: 46.214 - type: mrr_at_1000 value: 46.259 - type: mrr_at_3 value: 42.631 - type: mrr_at_5 value: 44.044 - type: ndcg_at_1 value: 36.834 - type: ndcg_at_10 value: 43.146 - type: ndcg_at_100 value: 50.632999999999996 - type: ndcg_at_1000 value: 52.608999999999995 - type: ndcg_at_3 value: 37.851 - type: ndcg_at_5 value: 40.005 - type: precision_at_1 value: 36.834 - type: precision_at_10 value: 9.647 - type: precision_at_100 value: 1.574 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 21.48 - type: precision_at_5 value: 15.649 - type: recall_at_1 value: 24.215 - type: recall_at_10 value: 54.079 - type: recall_at_100 value: 84.943 - type: recall_at_1000 value: 98.098 - type: recall_at_3 value: 38.117000000000004 - type: recall_at_5 value: 44.775999999999996 - task: type: PairClassification dataset: name: MTEB Cmnli type: C-MTEB/CMNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 82.51352976548407 - type: cos_sim_ap value: 89.49905141462749 - type: cos_sim_f1 value: 83.89334489486234 - type: cos_sim_precision value: 78.19761567993534 - type: cos_sim_recall value: 90.48398410100538 - type: dot_accuracy value: 82.51352976548407 - type: dot_ap value: 89.49108293121158 - type: dot_f1 value: 83.89334489486234 - type: dot_precision value: 78.19761567993534 - type: dot_recall value: 90.48398410100538 - type: euclidean_accuracy value: 82.51352976548407 - type: euclidean_ap value: 89.49904709975154 - type: euclidean_f1 value: 83.89334489486234 - type: euclidean_precision value: 78.19761567993534 - type: euclidean_recall value: 90.48398410100538 - type: manhattan_accuracy value: 82.48947684906794 - type: manhattan_ap value: 89.49231995962901 - type: manhattan_f1 value: 83.84681215233205 - type: manhattan_precision value: 77.28258726089528 - type: manhattan_recall value: 91.62964694879588 - type: max_accuracy value: 82.51352976548407 - type: max_ap value: 89.49905141462749 - type: max_f1 value: 83.89334489486234 - task: type: Retrieval dataset: name: MTEB CovidRetrieval type: C-MTEB/CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 78.583 - type: map_at_10 value: 85.613 - type: map_at_100 value: 85.777 - type: map_at_1000 value: 85.77900000000001 - type: map_at_3 value: 84.58 - type: map_at_5 value: 85.22800000000001 - type: mrr_at_1 value: 78.925 - type: mrr_at_10 value: 85.667 - type: mrr_at_100 value: 85.822 - type: mrr_at_1000 value: 85.824 - type: mrr_at_3 value: 84.651 - type: mrr_at_5 value: 85.299 - type: ndcg_at_1 value: 78.925 - type: ndcg_at_10 value: 88.405 - type: ndcg_at_100 value: 89.02799999999999 - type: ndcg_at_1000 value: 89.093 - type: ndcg_at_3 value: 86.393 - type: ndcg_at_5 value: 87.5 - type: precision_at_1 value: 78.925 - type: precision_at_10 value: 9.789 - type: precision_at_100 value: 1.005 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 30.769000000000002 - type: precision_at_5 value: 19.031000000000002 - type: recall_at_1 value: 78.583 - type: recall_at_10 value: 96.891 - type: recall_at_100 value: 99.473 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 91.438 - type: recall_at_5 value: 94.152 - task: type: Retrieval dataset: name: MTEB DuRetrieval type: C-MTEB/DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.604 - type: map_at_10 value: 77.171 - type: map_at_100 value: 80.033 - type: map_at_1000 value: 80.099 - type: map_at_3 value: 54.364000000000004 - type: map_at_5 value: 68.024 - type: mrr_at_1 value: 89.85 - type: mrr_at_10 value: 93.009 - type: mrr_at_100 value: 93.065 - type: mrr_at_1000 value: 93.068 - type: mrr_at_3 value: 92.72500000000001 - type: mrr_at_5 value: 92.915 - type: ndcg_at_1 value: 89.85 - type: ndcg_at_10 value: 85.038 - type: ndcg_at_100 value: 88.247 - type: ndcg_at_1000 value: 88.837 - type: ndcg_at_3 value: 85.20299999999999 - type: ndcg_at_5 value: 83.47 - type: precision_at_1 value: 89.85 - type: precision_at_10 value: 40.275 - type: precision_at_100 value: 4.709 - type: precision_at_1000 value: 0.486 - type: precision_at_3 value: 76.36699999999999 - type: precision_at_5 value: 63.75999999999999 - type: recall_at_1 value: 25.604 - type: recall_at_10 value: 85.423 - type: recall_at_100 value: 95.695 - type: recall_at_1000 value: 98.669 - type: recall_at_3 value: 56.737 - type: recall_at_5 value: 72.646 - task: type: Retrieval dataset: name: MTEB EcomRetrieval type: C-MTEB/EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 51.800000000000004 - type: map_at_10 value: 62.17 - type: map_at_100 value: 62.649 - type: map_at_1000 value: 62.663000000000004 - type: map_at_3 value: 59.699999999999996 - type: map_at_5 value: 61.23499999999999 - type: mrr_at_1 value: 51.800000000000004 - type: mrr_at_10 value: 62.17 - type: mrr_at_100 value: 62.649 - type: mrr_at_1000 value: 62.663000000000004 - type: mrr_at_3 value: 59.699999999999996 - type: mrr_at_5 value: 61.23499999999999 - type: ndcg_at_1 value: 51.800000000000004 - type: ndcg_at_10 value: 67.246 - type: ndcg_at_100 value: 69.58 - type: ndcg_at_1000 value: 69.925 - type: ndcg_at_3 value: 62.197 - type: ndcg_at_5 value: 64.981 - type: precision_at_1 value: 51.800000000000004 - type: precision_at_10 value: 8.32 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 23.133 - type: precision_at_5 value: 15.24 - type: recall_at_1 value: 51.800000000000004 - type: recall_at_10 value: 83.2 - type: recall_at_100 value: 94.1 - type: recall_at_1000 value: 96.8 - type: recall_at_3 value: 69.39999999999999 - type: recall_at_5 value: 76.2 - task: type: Classification dataset: name: MTEB IFlyTek type: C-MTEB/IFlyTek-classification config: default split: validation revision: None metrics: - type: accuracy value: 49.60369372835706 - type: f1 value: 38.24016248875209 - task: type: Classification dataset: name: MTEB JDReview type: C-MTEB/JDReview-classification config: default split: test revision: None metrics: - type: accuracy value: 86.71669793621012 - type: ap value: 55.75807094995178 - type: f1 value: 81.59033162805417 - task: type: STS dataset: name: MTEB LCQMC type: C-MTEB/LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 69.50947272908907 - type: cos_sim_spearman value: 74.40054474949213 - type: euclidean_pearson value: 73.53007373987617 - type: euclidean_spearman value: 74.40054474732082 - type: manhattan_pearson value: 73.51396571849736 - type: manhattan_spearman value: 74.38395696630835 - task: type: Reranking dataset: name: MTEB MMarcoReranking type: C-MTEB/Mmarco-reranking config: default split: dev revision: None metrics: - type: map value: 31.188333827724108 - type: mrr value: 29.84801587301587 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval type: C-MTEB/MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 64.685 - type: map_at_10 value: 73.803 - type: map_at_100 value: 74.153 - type: map_at_1000 value: 74.167 - type: map_at_3 value: 71.98 - type: map_at_5 value: 73.21600000000001 - type: mrr_at_1 value: 66.891 - type: mrr_at_10 value: 74.48700000000001 - type: mrr_at_100 value: 74.788 - type: mrr_at_1000 value: 74.801 - type: mrr_at_3 value: 72.918 - type: mrr_at_5 value: 73.965 - type: ndcg_at_1 value: 66.891 - type: ndcg_at_10 value: 77.534 - type: ndcg_at_100 value: 79.106 - type: ndcg_at_1000 value: 79.494 - type: ndcg_at_3 value: 74.13499999999999 - type: ndcg_at_5 value: 76.20700000000001 - type: precision_at_1 value: 66.891 - type: precision_at_10 value: 9.375 - type: precision_at_100 value: 1.0170000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 27.932000000000002 - type: precision_at_5 value: 17.86 - type: recall_at_1 value: 64.685 - type: recall_at_10 value: 88.298 - type: recall_at_100 value: 95.426 - type: recall_at_1000 value: 98.48700000000001 - type: recall_at_3 value: 79.44200000000001 - type: recall_at_5 value: 84.358 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.30531271015468 - type: f1 value: 70.88091430578575 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.7128446536651 - type: f1 value: 75.06125593532262 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval type: C-MTEB/MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 52.7 - type: map_at_10 value: 59.532 - type: map_at_100 value: 60.085 - type: map_at_1000 value: 60.126000000000005 - type: map_at_3 value: 57.767 - type: map_at_5 value: 58.952000000000005 - type: mrr_at_1 value: 52.900000000000006 - type: mrr_at_10 value: 59.648999999999994 - type: mrr_at_100 value: 60.20100000000001 - type: mrr_at_1000 value: 60.242 - type: mrr_at_3 value: 57.882999999999996 - type: mrr_at_5 value: 59.068 - type: ndcg_at_1 value: 52.7 - type: ndcg_at_10 value: 62.883 - type: ndcg_at_100 value: 65.714 - type: ndcg_at_1000 value: 66.932 - type: ndcg_at_3 value: 59.34700000000001 - type: ndcg_at_5 value: 61.486 - type: precision_at_1 value: 52.7 - type: precision_at_10 value: 7.340000000000001 - type: precision_at_100 value: 0.8699999999999999 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 21.3 - type: precision_at_5 value: 13.819999999999999 - type: recall_at_1 value: 52.7 - type: recall_at_10 value: 73.4 - type: recall_at_100 value: 87.0 - type: recall_at_1000 value: 96.8 - type: recall_at_3 value: 63.9 - type: recall_at_5 value: 69.1 - task: type: Classification dataset: name: MTEB MultilingualSentiment type: C-MTEB/MultilingualSentiment-classification config: default split: validation revision: None metrics: - type: accuracy value: 76.47666666666667 - type: f1 value: 76.4808576632057 - task: type: PairClassification dataset: name: MTEB Ocnli type: C-MTEB/OCNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 77.58527341635084 - type: cos_sim_ap value: 79.32131557636497 - type: cos_sim_f1 value: 80.51948051948052 - type: cos_sim_precision value: 71.7948717948718 - type: cos_sim_recall value: 91.65786694825766 - type: dot_accuracy value: 77.58527341635084 - type: dot_ap value: 79.32131557636497 - type: dot_f1 value: 80.51948051948052 - type: dot_precision value: 71.7948717948718 - type: dot_recall value: 91.65786694825766 - type: euclidean_accuracy value: 77.58527341635084 - type: euclidean_ap value: 79.32131557636497 - type: euclidean_f1 value: 80.51948051948052 - type: euclidean_precision value: 71.7948717948718 - type: euclidean_recall value: 91.65786694825766 - type: manhattan_accuracy value: 77.15213860314023 - type: manhattan_ap value: 79.26178519246496 - type: manhattan_f1 value: 80.22028453418999 - type: manhattan_precision value: 70.94155844155844 - type: manhattan_recall value: 92.29144667370645 - type: max_accuracy value: 77.58527341635084 - type: max_ap value: 79.32131557636497 - type: max_f1 value: 80.51948051948052 - task: type: Classification dataset: name: MTEB OnlineShopping type: C-MTEB/OnlineShopping-classification config: default split: test revision: None metrics: - type: accuracy value: 92.68 - type: ap value: 90.78652757815115 - type: f1 value: 92.67153098230253 - task: type: STS dataset: name: MTEB PAWSX type: C-MTEB/PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 35.301730226895955 - type: cos_sim_spearman value: 38.54612530948101 - type: euclidean_pearson value: 39.02831131230217 - type: euclidean_spearman value: 38.54612530948101 - type: manhattan_pearson value: 39.04765584936325 - type: manhattan_spearman value: 38.54455759013173 - task: type: STS dataset: name: MTEB QBQTC type: C-MTEB/QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 32.27907454729754 - type: cos_sim_spearman value: 33.35945567162729 - type: euclidean_pearson value: 31.997628193815725 - type: euclidean_spearman value: 33.3592386340529 - type: manhattan_pearson value: 31.97117833750544 - type: manhattan_spearman value: 33.30857326127779 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.53712784446981 - type: cos_sim_spearman value: 62.975074386224286 - type: euclidean_pearson value: 61.791207731290854 - type: euclidean_spearman value: 62.975073716988064 - type: manhattan_pearson value: 62.63850653150875 - type: manhattan_spearman value: 63.56640346497343 - task: type: STS dataset: name: MTEB STSB type: C-MTEB/STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 79.52067424748047 - type: cos_sim_spearman value: 79.68425102631514 - type: euclidean_pearson value: 79.27553959329275 - type: euclidean_spearman value: 79.68450427089856 - type: manhattan_pearson value: 79.21584650471131 - type: manhattan_spearman value: 79.6419242840243 - task: type: Reranking dataset: name: MTEB T2Reranking type: C-MTEB/T2Reranking config: default split: dev revision: None metrics: - type: map value: 65.8563449629786 - type: mrr value: 75.82550832339254 - task: type: Retrieval dataset: name: MTEB T2Retrieval type: C-MTEB/T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 27.889999999999997 - type: map_at_10 value: 72.878 - type: map_at_100 value: 76.737 - type: map_at_1000 value: 76.836 - type: map_at_3 value: 52.738 - type: map_at_5 value: 63.726000000000006 - type: mrr_at_1 value: 89.35600000000001 - type: mrr_at_10 value: 92.622 - type: mrr_at_100 value: 92.692 - type: mrr_at_1000 value: 92.694 - type: mrr_at_3 value: 92.13799999999999 - type: mrr_at_5 value: 92.452 - type: ndcg_at_1 value: 89.35600000000001 - type: ndcg_at_10 value: 81.932 - type: ndcg_at_100 value: 86.351 - type: ndcg_at_1000 value: 87.221 - type: ndcg_at_3 value: 84.29100000000001 - type: ndcg_at_5 value: 82.279 - type: precision_at_1 value: 89.35600000000001 - type: precision_at_10 value: 39.511 - type: precision_at_100 value: 4.901 - type: precision_at_1000 value: 0.513 - type: precision_at_3 value: 72.62100000000001 - type: precision_at_5 value: 59.918000000000006 - type: recall_at_1 value: 27.889999999999997 - type: recall_at_10 value: 80.636 - type: recall_at_100 value: 94.333 - type: recall_at_1000 value: 98.39099999999999 - type: recall_at_3 value: 54.797 - type: recall_at_5 value: 67.824 - task: type: Classification dataset: name: MTEB TNews type: C-MTEB/TNews-classification config: default split: validation revision: None metrics: - type: accuracy value: 51.979000000000006 - type: f1 value: 50.35658238894168 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringP2P type: C-MTEB/ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 68.36477832710159 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringS2S type: C-MTEB/ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 62.92080622759053 - task: type: Retrieval dataset: name: MTEB VideoRetrieval type: C-MTEB/VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 59.3 - type: map_at_10 value: 69.299 - type: map_at_100 value: 69.669 - type: map_at_1000 value: 69.682 - type: map_at_3 value: 67.583 - type: map_at_5 value: 68.57799999999999 - type: mrr_at_1 value: 59.3 - type: mrr_at_10 value: 69.299 - type: mrr_at_100 value: 69.669 - type: mrr_at_1000 value: 69.682 - type: mrr_at_3 value: 67.583 - type: mrr_at_5 value: 68.57799999999999 - type: ndcg_at_1 value: 59.3 - type: ndcg_at_10 value: 73.699 - type: ndcg_at_100 value: 75.626 - type: ndcg_at_1000 value: 75.949 - type: ndcg_at_3 value: 70.18900000000001 - type: ndcg_at_5 value: 71.992 - type: precision_at_1 value: 59.3 - type: precision_at_10 value: 8.73 - type: precision_at_100 value: 0.9650000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 25.900000000000002 - type: precision_at_5 value: 16.42 - type: recall_at_1 value: 59.3 - type: recall_at_10 value: 87.3 - type: recall_at_100 value: 96.5 - type: recall_at_1000 value: 99.0 - type: recall_at_3 value: 77.7 - type: recall_at_5 value: 82.1 - task: type: Classification dataset: name: MTEB Waimai type: C-MTEB/waimai-classification config: default split: test revision: None metrics: - type: accuracy value: 88.36999999999999 - type: ap value: 73.29590829222836 - type: f1 value: 86.74250506247606 --- # linlueird/gte-large-zh-GGUF This model was converted to GGUF format from [`thenlper/gte-large-zh`](https://huggingface.co/thenlper/gte-large-zh) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/thenlper/gte-large-zh) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo linlueird/gte-large-zh-GGUF --hf-file gte-large-zh-q4_k_m.gguf -c 2048 ```