liamchalcroft commited on
Commit
071025c
·
verified ·
1 Parent(s): 7cd5394

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -3
README.md CHANGED
@@ -1,3 +1,35 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - medical-imaging
5
+ - mri
6
+ - self-supervised
7
+ - 3d
8
+ - neuroimaging
9
+ license: apache-2.0
10
+ library_name: pytorch
11
+ datasets:
12
+ - custom
13
+ ---
14
+
15
+ # SimCLR-MRI Pre-trained Encoder (SeqInv)
16
+
17
+ This repository contains a pre-trained 3D CNN encoder for MRI analysis. The model was trained using contrastive learning (SimCLR) with explicit sequence invariance enforced through paired multi-contrast images.
18
+
19
+ ## Model Description
20
+
21
+ The encoder is a 3D CNN with 5 convolutional blocks (64, 128, 256, 512, 768 channels), outputting 768-dimensional features. This SeqInv variant was trained on paired sequences generated through Bloch simulations, explicitly enforcing sequence invariance in the learned representations.
22
+
23
+ ### Training Procedure
24
+ - **Pre-training Data**: 51 qMRI datasets (22 healthy, 29 stroke subjects)
25
+ - **Training Strategy**: Paired sequence views + standard augmentations
26
+ - **Input**: 3D MRI volumes (96×96×96)
27
+ - **Output**: 768-dimensional sequence-invariant feature vectors
28
+
29
+ ## Intended Uses
30
+
31
+ This encoder is particularly suited for:
32
+ - Sequence-agnostic analysis tasks
33
+ - Multi-sequence registration
34
+ - Cross-sequence synthesis
35
+ - Tasks requiring sequence-invariant features