--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/deita-10k-v0-sft model-index: - name: zephyr-7b-gemma-sft results: [] --- # zephyr-7b-gemma-sft This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/deita-10k-v0-sft dataset. It achieves the following results on the evaluation set: - Loss: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8286 | 0.2924 | 100 | 0.8580 | | 0.798 | 0.5848 | 200 | 0.8706 | | 0.7677 | 0.8772 | 300 | 0.8727 | | 0.5584 | 1.1696 | 400 | 0.9159 | | 0.5186 | 1.4620 | 500 | 0.8920 | | 0.5067 | 1.7544 | 600 | 0.8780 | | 0.2223 | 2.0468 | 700 | 0.9511 | | 0.2114 | 2.3392 | 800 | 0.9492 | | 0.1983 | 2.6316 | 900 | 0.9508 | | 0.2014 | 2.9240 | 1000 | 0.9465 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+rocm6.2 - Datasets 3.5.0 - Tokenizers 0.20.3