--- library_name: transformers base_model: ModernBERT-base tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: se_train_run_COPD results: [] --- # se_train_run_COPD This model is a fine-tuned version of [ModernBERT-base](https://huggingface.co/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8425 - Model Preparation Time: 0.0018 - F1: 0.8243 - Precision: 0.7807 - Recall: 0.8729 - Threshold: 0.7059 - Sim Ratio: 1.319 - Pos Sim: 0.821 - Neg Sim: 0.6224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | F1 | Precision | Recall | Threshold | Sim Ratio | Pos Sim | Neg Sim | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:------:|:---------:|:------:|:---------:|:---------:|:-------:|:-------:| | 1.6722 | 0.6039 | 5000 | 2.9257 | 0.0018 | 0.8139 | 0.7651 | 0.8692 | 0.6885 | 1.3473 | 0.8195 | 0.6082 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0