File size: 6,123 Bytes
464755b
9391635
b053ef1
 
 
091a70f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464755b
7cc5c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43870ba
 
091a70f
2f404f0
 
 
 
 
 
 
091a70f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
inference: true
language:
- en
- de
license: apache-2.0
model-index:
- name: Delexa-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.0
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.49
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 62.13
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.08
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lex-hue/Delexa-7b
      name: Open LLM Leaderboard
---
# Model Card

### Model Name: Delexa-7b

#### Overview:

**Purpose:** Delexa-7b is our newest large language model designed for general-purpose language tasks. It's currently under development, with ongoing improvements and testing.  

**Status:**  Active development and refinement. More comprehensive evaluation results will be available soon.

**Skills:** Initial evaluations show Delexa-7b performing exceptionally well on general tasks from llm-judge.

**Guardrails** This Model allows 18+ content and lewd content, but it wont let any illegal content through (unless you jailbreak it)

**Evaluation:**  Preliminary results from llm-judge are extremely promising. Delexa-7b demonstrates strong performance, with the potential to surpass established models. Stay tuned for more detailed evaluations!

| model                 | first turn score | second turn score | average score |
|-----------------------|------------------|-------------------|---------------|
| gpt-4                 | 8.95625          | 9.0250            | 8.990625      |
| **Delexa-7b**             | **8.70000**          | 7.5875            | **8.143750**      |
| gpt-3.5-turbo         | 8.07500          | 7.8125            | 7.943750      |
| claude-v1             | 8.15000          | 7.6500            | 7.900000      |
| palm-2-chat-bison-001 | 6.71250          | 6.0875            | 6.400000      |
| vicuna-13b-v1.3       | 6.81250          | 5.9625            | 6.387500      |

**Intended Use:**

* Exploring the capabilities of new language models.
* Experimentation and learning for AI development enthusiasts.  
* Potential applications in areas where STEM reasoning is essential. 

**Potential Risks:** 

* Like other uncensored large language models, Delexa-7b could and will generate harmful, biased, or offensive content if asked to. Responsible use and careful monitoring are essential if this model goes into production for your Business.

**Ethical Considerations**

* Delexa-7b is in the early stages of development. We are committed to ongoing evaluation to identify potential biases and address them proactively.
* Updates to this model card will ensure transparency as Delexa-7b evolves. 

### Additional Notes

Delexa-7b represents an exciting development with the potential to deliver impressive results. We invite the community to explore its capabilities and provide feedback as we continue to refine it.

We were impressed by the Evaluation Train results for our algorithm.  It showed strong performance gains despite using only 30% of our usual training data. We're excited to train it on the complete dataset.

### Support Our Work and join our Community!:

[Our Patreon](https://patreon.com/Lex_Hue?utm_medium=unknown&utm_source=join_link&utm_campaign=creatorshare_creator&utm_content=copyLink)

[Our Twitter](https://twitter.com/lex_hue)

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lex-hue__Delexa-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |70.86|
|AI2 Reasoning Challenge (25-Shot)|68.00|
|HellaSwag (10-Shot)              |86.49|
|MMLU (5-Shot)                    |64.69|
|TruthfulQA (0-shot)              |62.13|
|Winogrande (5-shot)              |79.08|
|GSM8k (5-shot)                   |64.75|