--- language: en tags: - text-to-speech - tts - audio - speech-synthesis - orpheus - gguf - unsloth license: apache-2.0 datasets: - lex-au/Orpheus-3b-Kaya --- # Orpheus-3b-Kaya-FP16 This is a **fine-tuned version** of the pretrained model [canopylabs/orpheus-3b-0.1-pretrained](https://huggingface.co/canopylabs/orpheus-3b-0.1-pretrained), trained on a custom voice dataset and quantised to GGUF FP16 format for fast, efficient inference. --- ## 🔧 Model Details - **Model Type**: Text-to-Speech (TTS) - **Architecture**: Token-to-audio language model - **Parameters**: ~3 billion - **Quantisation**: 8-bit GGUF (FP16) - **Sampling Rate**: 24kHz mono - **Training Epochs**: 1 - **Training Dataset**: [lex-au/Orpheus-3b-Kaya](https://huggingface.co/datasets/lex-au/Orpheus-3b-Kaya) - **Languages**: English --- ## 🚀 Quick Usage This model is designed for use with [Orpheus-FastAPI](https://github.com/Lex-au/Orpheus-FastAPI), an OpenAI-compatible inference server for text-to-speech generation. ### Compatible Inference Servers You can load this model into: - [GPUStack](https://github.com/gpustack/gpustack) - [LM Studio](https://lmstudio.ai/) - [llama.cpp](https://github.com/ggerganov/llama.cpp) - Any other GGUF-compatible OpenAI-style server ## 📜 License Apache License 2.0 — free for research and commercial use. --- ## 🙌 Credits - Original model by: [Canopy Labs](https://huggingface.co/canopylabs/orpheus-3b-0.1-pt) - Fine-tuned, quantised, and API-wrapped by: [Lex-au](https://huggingface.co/lex-au) via [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) --- ## 📚 Citation ``` @misc{orpheus-tts-2025, author = {Canopy Labs}, title = {Orpheus-3b-0.1-pt: Pretrained Text-to-Speech Model}, year = {2025}, publisher = {HuggingFace}, howpublished = {\url{https://huggingface.co/canopylabs/orpheus-3b-0.1-pt}} } @misc{orpheus-kaya-2025, author = {Lex-au}, title = {Orpheus-3b-Kaya-FP16: Fine-Tuned TTS Model (Quantised)}, note = {Fine-tuned from canopylabs/orpheus-3b-0.1-pt}, year = {2025}, publisher = {HuggingFace}, howpublished = {\url{https://huggingface.co/lex-au/Orpheus-3b-Kaya-FP16}} } ```