--- library_name: peft license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer model-index: - name: 15d56899-41e5-46be-9482-e05c51fc9787 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: microsoft/phi-2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ee69cf7c0a09cea_train_data.json ds_type: json format: custom path: /workspace/input_data/1ee69cf7c0a09cea_train_data.json type: field_input: intent field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: true hub_model_id: lesso14/15d56899-41e5-46be-9482-e05c51fc9787 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000214 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/G.O.D/1ee69cf7c0a09cea_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 37cb917e-d3d3-40a3-8b8b-b71ad004f462 wandb_project: 14a wandb_run: your_name wandb_runid: 37cb917e-d3d3-40a3-8b8b-b71ad004f462 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 15d56899-41e5-46be-9482-e05c51fc9787 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000214 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.7124 | | 0.7606 | 0.0021 | 50 | 0.7107 | | 0.7933 | 0.0042 | 100 | 0.8085 | | 0.8646 | 0.0063 | 150 | 0.8180 | | 0.8118 | 0.0084 | 200 | 0.6951 | | 0.7386 | 0.0105 | 250 | 0.6735 | | 0.7899 | 0.0126 | 300 | 0.6701 | | 0.7901 | 0.0148 | 350 | 0.6612 | | 0.7539 | 0.0169 | 400 | 0.6434 | | 0.7689 | 0.0190 | 450 | 0.6437 | | 0.737 | 0.0211 | 500 | 0.6424 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1