|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
self.pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=path, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
inputs = data.pop("inputs",data) |
|
print("inputs", inputs) |
|
prediction = self.pipe(inputs) |
|
return prediction |