Add 模型卡片
Browse files
README.md
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- audio-classification
|
5 |
+
- wav2vec2
|
6 |
+
- sound-detection
|
7 |
+
- few-shot-learning
|
8 |
+
- pytorch
|
9 |
+
language:
|
10 |
+
- zh
|
11 |
+
datasets:
|
12 |
+
- custom
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
+
- precision
|
16 |
+
- recall
|
17 |
+
- f1
|
18 |
+
library_name: transformers
|
19 |
+
pipeline_tag: audio-classification
|
20 |
+
---
|
21 |
+
|
22 |
+
# 🎯 热水器开关声音检测器 (Heater Switch Sound Detector)
|
23 |
+
|
24 |
+
基于Wav2Vec2的热水器开关声音实时检测模型。这是一个少样本学习项目,仅用6个音频样本就能达到100%的检测准确率。
|
25 |
+
|
26 |
+
## 模型描述
|
27 |
+
|
28 |
+
该模型使用Facebook的Wav2Vec2预训练模型作为特征提取器,在热水器开关声音数据上进行微调,实现对开关按下声音的精确识别。
|
29 |
+
|
30 |
+
### 模型架构
|
31 |
+
|
32 |
+
```
|
33 |
+
原始音频 [48000 samples]
|
34 |
+
↓ Wav2Vec2特征编码器 (7层1D卷积)
|
35 |
+
局部特征 [1199, 768]
|
36 |
+
↓ Wav2Vec2上下文网络 (12层Transformer)
|
37 |
+
上下文特征 [1199, 768]
|
38 |
+
↓ 全局平均池化
|
39 |
+
固定特征 [768]
|
40 |
+
↓ 分类头 (2层全连接)
|
41 |
+
分类结果 [2] (开关/背景)
|
42 |
+
```
|
43 |
+
|
44 |
+
## 训练数据
|
45 |
+
|
46 |
+
- **正样本**: 6个热水器开关声音 (3.2-5.2秒)
|
47 |
+
- **负样本**: 6个自动生成的背景噪音
|
48 |
+
- **总样本**: 12个 (训练集8个,测试集4个)
|
49 |
+
- **采样率**: 16kHz
|
50 |
+
- **格式**: 单声道WAV
|
51 |
+
|
52 |
+
### 数据特征分析
|
53 |
+
|
54 |
+
| 样本类型 | 时长范围 | RMS能量 | 频谱质心 | 过零率 |
|
55 |
+
|----------|----------|---------|----------|--------|
|
56 |
+
| 开关声音 | 3.2-5.2s | 0.0079-0.0115 | 1587-1992Hz | 0.0657-0.1215 |
|
57 |
+
| 背景噪音 | 2.0-4.0s | 0.005-0.02 | 500-1500Hz | 0.05-0.15 |
|
58 |
+
|
59 |
+
## 性能指标
|
60 |
+
|
61 |
+
| 指标 | 数值 |
|
62 |
+
|------|------|
|
63 |
+
| **准确率** | 100% |
|
64 |
+
| **精确率** | 100% |
|
65 |
+
| **召回率** | 100% |
|
66 |
+
| **F1分数** | 100% |
|
67 |
+
| **训练轮数** | 15 epochs |
|
68 |
+
| **模型大小** | 361MB |
|
69 |
+
| **推理延迟** | <100ms |
|
70 |
+
|
71 |
+
### 混淆矩阵
|
72 |
+
|
73 |
+
```
|
74 |
+
实际\预测 无开关 有开关
|
75 |
+
无开关 2 0
|
76 |
+
有开关 0 2
|
77 |
+
```
|
78 |
+
|
79 |
+
## 使用方法
|
80 |
+
|
81 |
+
### 安装依赖
|
82 |
+
|
83 |
+
```bash
|
84 |
+
pip install torch torchaudio transformers huggingface_hub
|
85 |
+
```
|
86 |
+
|
87 |
+
### 加载模型
|
88 |
+
|
89 |
+
```python
|
90 |
+
from huggingface_hub import hf_hub_download
|
91 |
+
import torch
|
92 |
+
import torchaudio
|
93 |
+
from transformers import Wav2Vec2Model
|
94 |
+
|
95 |
+
# 下载模型
|
96 |
+
model_path = hf_hub_download(
|
97 |
+
repo_id="lemonhall/heater-switch-detector",
|
98 |
+
filename="switch_detector_model.pth"
|
99 |
+
)
|
100 |
+
|
101 |
+
# 加载模型
|
102 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
103 |
+
checkpoint = torch.load(model_path, map_location=device)
|
104 |
+
|
105 |
+
# 重建模型架构
|
106 |
+
wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
|
107 |
+
classifier = torch.nn.Sequential(
|
108 |
+
torch.nn.Linear(768, 256),
|
109 |
+
torch.nn.ReLU(),
|
110 |
+
torch.nn.Dropout(0.3),
|
111 |
+
torch.nn.Linear(256, 2)
|
112 |
+
)
|
113 |
+
|
114 |
+
# 加载权重
|
115 |
+
classifier.load_state_dict(checkpoint['classifier_state_dict'])
|
116 |
+
classifier.eval()
|
117 |
+
```
|
118 |
+
|
119 |
+
### 音频预测
|
120 |
+
|
121 |
+
```python
|
122 |
+
def predict_audio(audio_path):
|
123 |
+
# 加载音频
|
124 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
125 |
+
|
126 |
+
# 重采样到16kHz
|
127 |
+
if sample_rate != 16000:
|
128 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
129 |
+
waveform = resampler(waveform)
|
130 |
+
|
131 |
+
# 转为单声道
|
132 |
+
if waveform.shape[0] > 1:
|
133 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
134 |
+
|
135 |
+
# 特征提取
|
136 |
+
with torch.no_grad():
|
137 |
+
features = wav2vec2_model(waveform).last_hidden_state
|
138 |
+
pooled_features = features.mean(dim=1) # 全局平均池化
|
139 |
+
|
140 |
+
# 分类预测
|
141 |
+
logits = classifier(pooled_features)
|
142 |
+
probabilities = torch.softmax(logits, dim=-1)
|
143 |
+
prediction = torch.argmax(probabilities, dim=-1)
|
144 |
+
|
145 |
+
return {
|
146 |
+
'prediction': '开关按下' if prediction.item() == 1 else '背景声音',
|
147 |
+
'confidence': probabilities.max().item(),
|
148 |
+
'probabilities': {
|
149 |
+
'背景声音': probabilities[0][0].item(),
|
150 |
+
'开关按下': probabilities[0][1].item()
|
151 |
+
}
|
152 |
+
}
|
153 |
+
|
154 |
+
# 使用示例
|
155 |
+
result = predict_audio("test_audio.wav")
|
156 |
+
print(f"预测结果: {result['prediction']}")
|
157 |
+
print(f"置信度: {result['confidence']:.3f}")
|
158 |
+
```
|
159 |
+
|
160 |
+
### 实时检测
|
161 |
+
|
162 |
+
```python
|
163 |
+
import pyaudio
|
164 |
+
import numpy as np
|
165 |
+
|
166 |
+
def realtime_detection():
|
167 |
+
# 音频参数
|
168 |
+
SAMPLE_RATE = 16000
|
169 |
+
CHUNK_SIZE = 1024
|
170 |
+
DETECTION_WINDOW = 3.0 # 3秒检测窗口
|
171 |
+
|
172 |
+
# 初始化音频流
|
173 |
+
audio = pyaudio.PyAudio()
|
174 |
+
stream = audio.open(
|
175 |
+
format=pyaudio.paFloat32,
|
176 |
+
channels=1,
|
177 |
+
rate=SAMPLE_RATE,
|
178 |
+
input=True,
|
179 |
+
frames_per_buffer=CHUNK_SIZE
|
180 |
+
)
|
181 |
+
|
182 |
+
print("🎤 开始实时检测...")
|
183 |
+
|
184 |
+
buffer = []
|
185 |
+
window_size = int(DETECTION_WINDOW * SAMPLE_RATE)
|
186 |
+
|
187 |
+
try:
|
188 |
+
while True:
|
189 |
+
# 读取音频数据
|
190 |
+
data = stream.read(CHUNK_SIZE)
|
191 |
+
audio_chunk = np.frombuffer(data, dtype=np.float32)
|
192 |
+
buffer.extend(audio_chunk)
|
193 |
+
|
194 |
+
# 保持窗口大小
|
195 |
+
if len(buffer) > window_size:
|
196 |
+
buffer = buffer[-window_size:]
|
197 |
+
|
198 |
+
# 检测
|
199 |
+
if len(buffer) == window_size:
|
200 |
+
waveform = torch.FloatTensor(buffer).unsqueeze(0)
|
201 |
+
|
202 |
+
with torch.no_grad():
|
203 |
+
features = wav2vec2_model(waveform).last_hidden_state
|
204 |
+
pooled_features = features.mean(dim=1)
|
205 |
+
logits = classifier(pooled_features)
|
206 |
+
probabilities = torch.softmax(logits, dim=-1)
|
207 |
+
|
208 |
+
switch_prob = probabilities[0][1].item()
|
209 |
+
|
210 |
+
if switch_prob > 0.93: # 高置信度阈值
|
211 |
+
print(f"🔥 检测到开关按下! 置信度: {switch_prob:.3f}")
|
212 |
+
|
213 |
+
except KeyboardInterrupt:
|
214 |
+
print("\n⏹️ 检测停止")
|
215 |
+
finally:
|
216 |
+
stream.stop_stream()
|
217 |
+
stream.close()
|
218 |
+
audio.terminate()
|
219 |
+
|
220 |
+
# 运行实时检测
|
221 |
+
realtime_detection()
|
222 |
+
```
|
223 |
+
|
224 |
+
## 技术特点
|
225 |
+
|
226 |
+
### 🚀 优势
|
227 |
+
|
228 |
+
- **少样本学习**: 仅需6个样本即可达到完美分类
|
229 |
+
- **端到端训练**: 从原始音频波形直接学习特征
|
230 |
+
- **预训练优势**: 利用Wav2Vec2的大规模预训练知识
|
231 |
+
- **实时检测**: 支持麦克风实时音频流处理
|
232 |
+
- **高精度**: 测试集100%准确率
|
233 |
+
|
234 |
+
### 🎯 应用场景
|
235 |
+
|
236 |
+
- **智能家居**: 自动检测热水器使用状态
|
237 |
+
- **设备监控**: 远程监控设备操作
|
238 |
+
- **节能管理**: 记录设备使用时间和频率
|
239 |
+
- **安全监控**: 异常使用模式检测
|
240 |
+
|
241 |
+
### ⚙️ 技术细节
|
242 |
+
|
243 |
+
- **基础模型**: facebook/wav2vec2-base
|
244 |
+
- **训练策略**: 冻结预训练参数,只训练分类头
|
245 |
+
- **优化器**: AdamW (lr=1e-4)
|
246 |
+
- **损失函数**: CrossEntropyLoss
|
247 |
+
- **数据增强**: 自动生成负样本
|
248 |
+
|
249 |
+
## 限制和改进
|
250 |
+
|
251 |
+
### 当前限制
|
252 |
+
|
253 |
+
- 训练数据较少,可能对新环境泛化能力有限
|
254 |
+
- 只能检测特定类型的开关声音
|
255 |
+
- 需要相对安静的环境以减少误报
|
256 |
+
|
257 |
+
### 未来改进
|
258 |
+
|
259 |
+
- [ ] 收集更多样化的训练数据
|
260 |
+
- [ ] 支持多类别检测(开/关/故障)
|
261 |
+
- [ ] 添加噪音鲁棒性训练
|
262 |
+
- [ ] 模型压缩和量化
|
263 |
+
- [ ] 支持更多设备类型
|
264 |
+
|
265 |
+
## 引用
|
266 |
+
|
267 |
+
如果您使用了这个模型,请引用:
|
268 |
+
|
269 |
+
```bibtex
|
270 |
+
@misc{heater-switch-detector-2024,
|
271 |
+
title={基于Wav2Vec2的热水器开关声音检测器},
|
272 |
+
author={lemonhall},
|
273 |
+
year={2024},
|
274 |
+
howpublished={\url{https://huggingface.co/lemonhall/heater-switch-detector}}
|
275 |
+
}
|
276 |
+
```
|
277 |
+
|
278 |
+
## 许可证
|
279 |
+
|
280 |
+
MIT License
|
281 |
+
|
282 |
+
## 联系方式
|
283 |
+
|
284 |
+
如有问题或建议,请通过以下方式联系:
|
285 |
+
- GitHub: [项目地址](https://github.com/lemonhall/heater_click)
|
286 |
+
- Email: [email protected]
|
287 |
+
|
288 |
+
---
|
289 |
+
|
290 |
+
*该模型仅用于研究和教育目的。在生产环境中使用前,请进行充分的测试和验证。*
|