leeyunjai commited on
Commit
5bdcce7
·
verified ·
1 Parent(s): ad91a0a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: ultralytics
5
+ pipeline_tag: object-detection
6
+ tags:
7
+ - yolo
8
+ - object-detect
9
+ - yolo11
10
+ - yolov11
11
+ ---
12
+
13
+ # Number and Operator Detection Based on YOLO11x
14
+
15
+ This repository contains a PyTorch-exported model for detecting sidewalk, car, sign and so on.. using the YOLO11s architecture. The model has been trained to recognize these symbols in images and return their locations and classifications.
16
+
17
+ ## Model Description
18
+
19
+ The YOLO11s model is optimized for detecting the following:
20
+
21
+ ```text
22
+ #class
23
+ Braille_block
24
+ car
25
+ downstairs
26
+ driveway
27
+ sidewalk
28
+ sign_green
29
+ sign_red
30
+ upstairs
31
+ ```
32
+ ## How to Use
33
+
34
+ To use this model in your project, follow the steps below:
35
+
36
+ ### 1. Installation
37
+
38
+ Ensure you have the `ultralytics` library installed, which is used for YOLO models:
39
+
40
+ ```bash
41
+ pip install ultralytics
42
+ ```
43
+
44
+ ### 2. Load the Model
45
+
46
+ You can load the model and perform detection on an image as follows:
47
+ ```python
48
+ from ultralytics import YOLO
49
+
50
+ # Load the model
51
+ model = YOLO("./yolo11m-sidewalk.pt")
52
+
53
+ # Perform detection on an image
54
+ results = model("image.png")
55
+
56
+ # Display or process the results
57
+ results.show() # This will display the image with detected objects
58
+ ```
59
+
60
+ ### 3. Model Inference
61
+ The results object contains bounding boxes, labels (e.g., numbers or operators), and confidence scores for each detected object.
62
+
63
+ Access them like this:
64
+
65
+ ```python
66
+ for result in results:
67
+ print(result.boxes) # Bounding boxes
68
+ print(result.names) # Detected classes
69
+ print(result.scores) # Confidence scores
70
+ ```
71
+
72
+ ![](result.png)
73
+
74
+ #yolo11