leeyunjai commited on
Commit
e58117f
·
verified ·
1 Parent(s): db5fbd4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: ultralytics
5
+ pipeline_tag: object-detection
6
+ tags:
7
+ - yolo
8
+ - object-detect
9
+ - yolo11
10
+ - yolov11
11
+ ---
12
+
13
+ # Number and Operator Detection Based on YOLO11x
14
+
15
+ This repository contains a PyTorch-exported model for detecting greed/red/yellow ball using the YOLO11s architecture. The model has been trained to recognize these symbols in images and return their locations and classifications.
16
+
17
+ ## Model Description
18
+
19
+ The YOLO11s model is optimized for detecting the following:
20
+
21
+ - greed/red/yellow ball
22
+ ```text
23
+ #class
24
+ greed ball
25
+ red ball
26
+ yellow ball
27
+ ```
28
+ ## How to Use
29
+
30
+ To use this model in your project, follow the steps below:
31
+
32
+ ### 1. Installation
33
+
34
+ Ensure you have the `ultralytics` library installed, which is used for YOLO models:
35
+
36
+ ```bash
37
+ pip install ultralytics
38
+ ```
39
+
40
+ ### 2. Load the Model
41
+
42
+ You can load the model and perform detection on an image as follows:
43
+ ```python
44
+ from ultralytics import YOLO
45
+
46
+ # Load the model
47
+ model = YOLO("./balldetect-11s.pt")
48
+
49
+ # Perform detection on an image
50
+ results = model("image.png")
51
+
52
+ # Display or process the results
53
+ results.show() # This will display the image with detected objects
54
+ ```
55
+
56
+ ### 3. Model Inference
57
+ The results object contains bounding boxes, labels (e.g., numbers or operators), and confidence scores for each detected object.
58
+
59
+ Access them like this:
60
+
61
+ ```python
62
+ for result in results:
63
+ print(result.boxes) # Bounding boxes
64
+ print(result.names) # Detected classes
65
+ print(result.scores) # Confidence scores
66
+ ```
67
+
68
+ ![](result.png)
69
+
70
+ #yolo11