Update caption_model.py
Browse files- caption_model.py +57 -0
caption_model.py
CHANGED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from utils import NestedTensor, nested_tensor_from_tensor_list
|
6 |
+
from backbone import build_backbone
|
7 |
+
from transformer import build_transformer
|
8 |
+
|
9 |
+
|
10 |
+
class Caption(nn.Module):
|
11 |
+
def __init__(self, backbone, transformer, hidden_dim, vocab_size):
|
12 |
+
super().__init__()
|
13 |
+
self.backbone = backbone
|
14 |
+
self.input_proj = nn.Conv2d(
|
15 |
+
backbone.num_channels, hidden_dim, kernel_size=1)
|
16 |
+
self.transformer = transformer
|
17 |
+
self.mlp = MLP(hidden_dim, 512, vocab_size, 3)
|
18 |
+
|
19 |
+
def forward(self, samples, target, target_mask):
|
20 |
+
if not isinstance(samples, NestedTensor):
|
21 |
+
samples = nested_tensor_from_tensor_list(samples)
|
22 |
+
|
23 |
+
features, pos = self.backbone(samples)
|
24 |
+
src, mask = features[-1].decompose()
|
25 |
+
|
26 |
+
assert mask is not None
|
27 |
+
|
28 |
+
hs = self.transformer(self.input_proj(src), mask,
|
29 |
+
pos[-1], target, target_mask)
|
30 |
+
out = self.mlp(hs.permute(1, 0, 2))
|
31 |
+
return out
|
32 |
+
|
33 |
+
|
34 |
+
class MLP(nn.Module):
|
35 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
36 |
+
|
37 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
38 |
+
super().__init__()
|
39 |
+
self.num_layers = num_layers
|
40 |
+
h = [hidden_dim] * (num_layers - 1)
|
41 |
+
self.layers = nn.ModuleList(nn.Linear(n, k)
|
42 |
+
for n, k in zip([input_dim] + h, h + [output_dim]))
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
for i, layer in enumerate(self.layers):
|
46 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
def build_model(config):
|
51 |
+
backbone = build_backbone(config)
|
52 |
+
transformer = build_transformer(config)
|
53 |
+
|
54 |
+
model = Caption(backbone, transformer, config.hidden_dim, config.vocab_size)
|
55 |
+
criterion = torch.nn.CrossEntropyLoss()
|
56 |
+
|
57 |
+
return model, criterion
|