|
--- |
|
license: apache-2.0 |
|
base_model: google/long-t5-tglobal-xl |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- learn3r/summ_screen_memsum_oracle |
|
model-index: |
|
- name: longt5_xl_sfd_memsum_40 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# longt5_xl_sfd_memsum_40 |
|
|
|
This model is a fine-tuned version of [google/long-t5-tglobal-xl](https://huggingface.co/google/long-t5-tglobal-xl) on the learn3r/summ_screen_memsum_oracle dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.2679 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 40.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.5238 | 0.97 | 28 | 2.3147 | |
|
| 2.1298 | 1.98 | 57 | 2.2837 | |
|
| 1.7525 | 2.99 | 86 | 2.3335 | |
|
| 1.2954 | 4.0 | 115 | 2.4995 | |
|
| 1.0518 | 4.97 | 143 | 2.8326 | |
|
| 0.7083 | 5.98 | 172 | 2.9095 | |
|
| 0.5124 | 6.99 | 201 | 3.4108 | |
|
| 0.4503 | 8.0 | 230 | 3.4459 | |
|
| 0.3145 | 8.97 | 258 | 3.5216 | |
|
| 0.2573 | 9.98 | 287 | 4.0127 | |
|
| 0.213 | 10.99 | 316 | 3.9714 | |
|
| 0.1682 | 12.0 | 345 | 3.8427 | |
|
| 0.1396 | 12.97 | 373 | 4.2025 | |
|
| 0.1363 | 13.98 | 402 | 4.4012 | |
|
| 0.1148 | 14.99 | 431 | 4.7174 | |
|
| 0.0907 | 16.0 | 460 | 4.4980 | |
|
| 0.0942 | 16.97 | 488 | 4.7024 | |
|
| 0.0765 | 17.98 | 517 | 4.3482 | |
|
| 0.0799 | 18.99 | 546 | 4.5386 | |
|
| 0.073 | 20.0 | 575 | 4.5889 | |
|
| 0.0825 | 20.97 | 603 | 4.6817 | |
|
| 0.0616 | 21.98 | 632 | 5.0263 | |
|
| 0.0677 | 22.99 | 661 | 4.5804 | |
|
| 0.0571 | 24.0 | 690 | 4.8399 | |
|
| 0.0525 | 24.97 | 718 | 4.9350 | |
|
| 0.081 | 25.98 | 747 | 4.6903 | |
|
| 0.0505 | 26.99 | 776 | 5.0005 | |
|
| 0.0576 | 28.0 | 805 | 5.0196 | |
|
| 0.0448 | 28.97 | 833 | 5.1100 | |
|
| 0.0457 | 29.98 | 862 | 5.0008 | |
|
| 0.0442 | 30.99 | 891 | 5.5093 | |
|
| 0.0391 | 32.0 | 920 | 5.4296 | |
|
| 0.0392 | 32.97 | 948 | 5.2357 | |
|
| 0.0376 | 33.98 | 977 | 5.2266 | |
|
| 0.0381 | 34.99 | 1006 | 5.2630 | |
|
| 0.0339 | 36.0 | 1035 | 5.3532 | |
|
| 0.0377 | 36.97 | 1063 | 5.4443 | |
|
| 0.0336 | 37.98 | 1092 | 5.0809 | |
|
| 0.0316 | 38.96 | 1120 | 5.2679 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|