--- base_model: learn-abc/html-model-tinyllama-chat-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora license: apache-2.0 language: - en --- # learn-abc/html-model-tinyllama-chat-bnb-4bit-F32-GGUF This LoRA adapter was converted to GGUF format from [`learn-abc/html-model-tinyllama-chat-bnb-4bit`](https://huggingface.co/learn-abc/html-model-tinyllama-chat-bnb-4bit) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/learn-abc/html-model-tinyllama-chat-bnb-4bit) for more details. # Fine-tuned TinyLlama for JSON Extraction (GGUF) This repository contains a fine-tuned version of the `unsloth/tinyllama-chat-bnb-4bit` model, specifically trained for extracting product information from HTML snippets and outputting it in a JSON format. This is the GGUF quantized version for use with tools like `llama.cpp` or other compatible inference engines. ## Model Details - **Base Model:** `learn-abc/html-model-tinyllama-chat-bnb-4bit` - **Fine-tuning Method:** LoRA (Low-Rank Adaptation) - **Quantization:** q4_k_m GGUF - **Trained on:** A custom dataset of HTML product snippets and their corresponding JSON representations. ## Usage This model can be used for tasks involving structured data extraction from HTML content using GGUF compatible software. ### Downloading and using the GGUF file You can download the GGUF file directly from the "Files and versions" tab on this repository page. To use this file with `llama.cpp`, you generally follow these steps: 1. **Download `llama.cpp`:** Clone the `llama.cpp` repository and build it. Follow the instructions in the `llama.cpp` README for building on your specific platform. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora html-model-tinyllama-chat-bnb-4bit-f32.gguf (...other args) # with server llama-server -m base_model.gguf --lora html-model-tinyllama-chat-bnb-4bit-f32.gguf (...other args) ``` ## Use python script ### Install llama.cpp ```bash pip install llama-cpp-python ``` ### Python script to run the model ```python from llama_cpp import Llama # Replace with the actual path to your downloaded GGUF file model_path = "/path/to/your/downloaded/html-model-tinyllama-chat-bnb-4bit-F32-GGUF.gguf" llm = Llama(model_path=model_path) prompt = "Extract the product information:\n