File size: 13,036 Bytes
eca0a91 cf81e33 99c0572 eca0a91 99c0572 eca0a91 cf81e33 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 eca0a91 99c0572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
base_model:
- HuggingFaceTB/SmolLM-135M-Instruct
datasets: []
languages:
- en
library_name: transformers
metrics: []
pipeline_tag: text-generation
tags: []
---
# Model Card for ldp72/Test-SmolLM-Marcel
<!-- Provide a quick summary of what the model is/does. -->
This model was finetuned by performing instruct tuning on Telco domain datatsets.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Orange
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** English
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** HuggingFaceTB/SmolLM-135M-Instruct
- **Date [optional]:** 2025-07-18 09:48:27
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
This model can be used with the `transformers` library using `pipeline` abstraction as follows:
```python
import torch
from transformers import pipeline
model_id = "ldp72/Test-SmolLM-Marcel"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are chatbot specialized on Telco domain."},
{"role": "user", "content": "Can you give a sample of your specialized knowledge?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
This model was finetuned with [Orange internal fine tuning tools](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/) with the Docker Image tagged `0.1.1` in the [registry](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/container_registry/84664) and the following configuration file:
```yaml
data:
dataset_name:
train:
- path: telco-lm/arxiv-abstract-generation-telco-instructions
revision: legacy
- path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions
revision: legacy
- path: telco-lm/teleqna-mcqa-cot-telco-instructions
revision: legacy
- path: telco-lm/tii-huawei-qa-open-qa-telco-instructions
revision: legacy
validation_abstract_generation:
- path: telco-lm/arxiv-abstract-generation-telco-instructions
revision: legacy
split: validation
validation_general:
- path: telco-lm/slim-orca-multi-task-general-instructions
revision: legacy
split: validation
validation_synthetic:
- path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions
revision: legacy
split: validation
- path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions
revision: legacy
split: validation
validation_telco_qa:
- path: telco-lm/tii-huawei-qa-open-qa-telco-instructions
revision: legacy
split: validation
validation_telco_qcm:
- path: telco-lm/teleqna-mcqa-cot-telco-instructions
revision: legacy
split: validation
debug: true
implementation_name: instructions
description:
contributors:
- email: [email protected]
first_name: Loïc
last_name: Fosse
- email: [email protected]
first_name: Lionel
last_name: Delphin-Poulat
- email: [email protected]
first_name: Ismaël
last_name: Rousseau
domain: Telco
languages:
- en
model_name: ldp72/Test-SmolLM-Marcel
image:
version: 0.1.1
model:
attn_implementation: flash_attention_2
chat_template_tokenizer: HuggingFaceTB/SmolLM-135M-Instruct
model_name_or_path: HuggingFaceTB/SmolLM-135M-Instruct
trust_remote_code: true
training:
bf16: true
dataloader_num_workers: 4
dataloader_persistent_workers: true
dataloader_pin_memory: true
dataloader_prefetch_factor: 2
deepspeed: /config/zero3.json
disable_tqdm: true
eval_accumulation_steps: 1
eval_steps: 10
eval_strategy: steps
fp16: false
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
learning_rate: 2.0e-05
log_level: debug
logging_dir: /outputs/Telco-SmolLM-135-Instruct-it-non-reg/logs
logging_steps: 10
lr_scheduler_type: cosine
max_grad_norm: 1.0
max_steps: -1
num_train_epochs: 2
optim: paged_adamw_32bit
output_dir: /outputs/Telco-SmolLM-135-Instruct-it-non-reg
per_device_eval_batch_size: 2
per_device_train_batch_size: 2
push_to_hub: false
report_to: tensorboard
save_steps: 0
save_strategy: epoch
save_total_limit: 1
seed: 42
torch_compile: false
training_type: instruct-tuning
use_liger_kernel: false
warmup_ratio: 0.05
weight_decay: 0.1
```
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
This model was trained on the following datasets:
```yaml
- path: telco-lm/arxiv-abstract-generation-telco-instructions
revision: legacy
- path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions
revision: legacy
- path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions
revision: legacy
- path: telco-lm/teleqna-mcqa-cot-telco-instructions
revision: legacy
- path: telco-lm/tii-huawei-qa-open-qa-telco-instructions
revision: legacy
```
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
<!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
- **Training regime:** This model was trained with the following hyperparameters for `SFTTrainer`,other parameters were set as default:
```yaml
bf16: true
dataloader_num_workers: 4
dataloader_persistent_workers: true
dataloader_pin_memory: true
dataloader_prefetch_factor: 2
deepspeed: /config/zero3.json
disable_tqdm: true
eval_accumulation_steps: 1
eval_steps: 10
eval_strategy: steps
fp16: false
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
learning_rate: 2.0e-05
log_level: debug
logging_dir: /outputs/Telco-SmolLM-135-Instruct-it-non-reg/logs
logging_steps: 10
lr_scheduler_type: cosine
max_grad_norm: 1.0
max_steps: -1
num_train_epochs: 2
optim: paged_adamw_32bit
output_dir: /outputs/Telco-SmolLM-135-Instruct-it-non-reg
per_device_eval_batch_size: 2
per_device_train_batch_size: 2
push_to_hub: false
report_to: tensorboard
save_steps: 0
save_strategy: epoch
save_total_limit: 1
seed: 42
torch_compile: false
use_liger_kernel: false
warmup_ratio: 0.05
weight_decay: 0.1
```
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
Thanks to [Loïc Fosse](mailto:[email protected]), [Lionel Delphin-Poulat](mailto:[email protected]), [Ismaël Rousseau](mailto:[email protected]) for adding this model.
|